cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215079 Triangle T(n,k) = k^n * sum(binomial(n,n-k-j),j=0..n-k).

Original entry on oeis.org

1, 0, 1, 0, 3, 4, 0, 7, 32, 27, 0, 15, 176, 405, 256, 0, 31, 832, 3888, 6144, 3125, 0, 63, 3648, 30618, 90112, 109375, 46656, 0, 127, 15360, 216513, 1048576, 2265625, 2239488, 823543, 0, 255, 63232, 1436859, 10682368, 36328125, 62145792, 51883209, 16777216, 0, 511, 257024, 9172278, 100139008, 500000000, 1310100480, 1856265922, 1342177280, 387420489, 0, 1023, 1037312, 57159432, 889192448, 6230468750, 23339943936, 49715643824, 60129542144, 38354628411, 10000000000
Offset: 0

Views

Author

Olivier Gérard, Aug 02 2012

Keywords

Comments

Initial term T(0,0) may be computed as 0, depending on formula and convention.

Examples

			      1
      0       1
      0       3       4
      0       7      32      27
      0      15     176     405     256
      0      31     832    3888    6144    3125
      0      63    3648   30618   90112  109375   46656
      0     127   15360  216513 1048576 2265625 2239488  823543
		

Crossrefs

Row sums sequence is A215077.
Product of A055248 and A089072 (with an initial 0 in each row).
Cf. A000225 (column k=1), A000312 (diagonal).

Programs

  • Maple
    A215079 := proc(n,k)
        k^n*add( binomial(n,n-k-j),j=0..n-k) ;
    end proc: # R. J. Mathar, Feb 08 2021
  • Mathematica
    Flatten[Table[Table[Sum[k^n*Binomial[n, n - k - j], {j, 0, n - k}],  {k, 0, n}], {n, 0, 10}], 1]

Formula

T(n,k) = k^n * sum(binomial(n,n-k-j),j=0..n-k) = k^n * A055248(n,k-1).
T(n,k) = k^n * binomial(n,n-k) * 2F1(1, k-n; k+1)(-1)
T(n,1) = A000225(n). - R. J. Mathar, Feb 08 2021