A215079 Triangle T(n,k) = k^n * sum(binomial(n,n-k-j),j=0..n-k).
1, 0, 1, 0, 3, 4, 0, 7, 32, 27, 0, 15, 176, 405, 256, 0, 31, 832, 3888, 6144, 3125, 0, 63, 3648, 30618, 90112, 109375, 46656, 0, 127, 15360, 216513, 1048576, 2265625, 2239488, 823543, 0, 255, 63232, 1436859, 10682368, 36328125, 62145792, 51883209, 16777216, 0, 511, 257024, 9172278, 100139008, 500000000, 1310100480, 1856265922, 1342177280, 387420489, 0, 1023, 1037312, 57159432, 889192448, 6230468750, 23339943936, 49715643824, 60129542144, 38354628411, 10000000000
Offset: 0
Examples
1 0 1 0 3 4 0 7 32 27 0 15 176 405 256 0 31 832 3888 6144 3125 0 63 3648 30618 90112 109375 46656 0 127 15360 216513 1048576 2265625 2239488 823543
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
A215079 := proc(n,k) k^n*add( binomial(n,n-k-j),j=0..n-k) ; end proc: # R. J. Mathar, Feb 08 2021
-
Mathematica
Flatten[Table[Table[Sum[k^n*Binomial[n, n - k - j], {j, 0, n - k}], {k, 0, n}], {n, 0, 10}], 1]
Formula
T(n,k) = k^n * sum(binomial(n,n-k-j),j=0..n-k) = k^n * A055248(n,k-1).
T(n,k) = k^n * binomial(n,n-k) * 2F1(1, k-n; k+1)(-1)
T(n,1) = A000225(n). - R. J. Mathar, Feb 08 2021
Comments