cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215080 T(n,k) = Sum_{j=0..k} (k-j)^n * binomial(n,j).

Original entry on oeis.org

1, 0, 1, 0, 1, 6, 0, 1, 11, 54, 0, 1, 20, 151, 680, 0, 1, 37, 413, 2569, 11000, 0, 1, 70, 1128, 9450, 52431, 217392, 0, 1, 135, 3104, 34416, 243255, 1251921, 5076400, 0, 1, 264, 8637, 125248, 1113027, 7025016, 34282879, 136761984, 0, 1, 521, 24327, 457807, 5064143, 38811015, 225930121, 1059812993, 4175432064, 0, 1, 1034, 69334, 1685266, 23031680, 212609518, 1465077802, 8026643702, 36519075583, 142469423360
Offset: 0

Views

Author

Olivier Gérard, Aug 02 2012

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,   6;
  0, 1,  11,   54;
  0, 1,  20,  151,    680;
  0, 1,  37,  413,   2569,   11000;
  0, 1,  70, 1128,   9450,   52431,  217392;
  0, 1, 135, 3104,  34416,  243255, 1251921,  5076400;
  0, 1, 264, 8637, 125248, 1113027, 7025016, 34282879, 136761984;
  ...
		

Crossrefs

Row sums give 215077 (binomial convolution of descending powers).
Main diagonal gives A072034.

Programs

  • Mathematica
    Flatten[Table[Table[Sum[(k - j)^n*Binomial[n, j], {j, 0, k}], {k, 0, n}], {n, 0, 10}], 1]

Formula

T(n,k) = sum( (k-j)^n * binomial(n,j), j=0..k).