A215083 Triangle T(n,k) = sum of the k first n-th powers.
0, 0, 1, 0, 1, 5, 0, 1, 9, 36, 0, 1, 17, 98, 354, 0, 1, 33, 276, 1300, 4425, 0, 1, 65, 794, 4890, 20515, 67171, 0, 1, 129, 2316, 18700, 96825, 376761, 1200304, 0, 1, 257, 6818, 72354, 462979, 2142595, 7907396, 24684612, 0, 1, 513, 20196, 282340, 2235465, 12313161, 52666768, 186884496, 574304985, 0, 1, 1025, 60074, 1108650, 10874275, 71340451, 353815700, 1427557524, 4914341925, 14914341925
Offset: 0
Examples
Triangle starts (using the convention 0^0 = 1, see the first comment): [0] 1 [1] 0, 1 [2] 0, 1, 5 [3] 0, 1, 9, 36 [4] 0, 1, 17, 98, 354 [5] 0, 1, 33, 276, 1300, 4425 [6] 0, 1, 65, 794, 4890, 20515, 67171
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
A215083 := (n, k) -> add(i^n, i=0..k): for n from 0 to 8 do seq(A215083(n, k), k=0..n) od; # Peter Luschny, Oct 02 2017
-
Mathematica
Flatten[Table[Table[Sum[j^n, {j, 1, k}], {k, 0, n}], {n, 0, 10}], 1] Table[ HarmonicNumber[k, -n], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 05 2013 *)
Formula
T(n, k) = Sum_{j=1..k} j^n
Sum_{j=0..n}((-1)^(n-j)/(j+1)*binomial(n+1,j+1)*T(n,j)) are the Bernoulli numbers B(n) = B(n, 1) by a formula of L. Kronecker. - Peter Luschny, Oct 02 2017
Comments