cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A023002 Sum of 10th powers.

Original entry on oeis.org

0, 1, 1025, 60074, 1108650, 10874275, 71340451, 353815700, 1427557524, 4914341925, 14914341925, 40851766526, 102769130750, 240627622599, 529882277575, 1106532668200, 2206044295976, 4222038196425, 7792505423049, 13923571680850
Offset: 0

Views

Author

Keywords

Crossrefs

Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), this sequence (m=10), A123095 (m=11), A123094 (m=12), A181134 (m=13).
Row 10 of array A103438.

Programs

Formula

a(n) = n*(n+1)*(2*n+1)*(n^2+n-1)(3*n^6 +9*n^5 +2*n^4 -11*n^3 +3*n^2 +10*n -5)/66 (see MathWorld, Power Sum, formula 40). - Bruno Berselli, Apr 26 2010
a(n) = n*A007487(n) - Sum_{i=0..n-1} A007487(i). - Bruno Berselli, Apr 27 2010
From Bruno Berselli, Aug 23 2011: (Start)
a(n) = -a(-n-1).
G.f.: x*(1+x)*(1 +1012*x +46828*x^2 +408364*x^3 +901990*x^4 +408364*x^5 +46828*x^6 +1012*x^7 +x^8)/(1-x)^12. (End)
a(n) = (-1)*Sum_{j=1..10} j*Stirling1(n+1,n+1-j)*Stirling2(n+10-j,n). - Mircea Merca, Jan 25 2014
a(n) = Sum_{i=1..n} J_10(i)*floor(n/i), where J_10 is A069095. - Ridouane Oudra, Jul 17 2025

A123094 Sum of first n 12th powers.

Original entry on oeis.org

0, 1, 4097, 535538, 17312754, 261453379, 2438235715, 16279522916, 84998999652, 367428536133, 1367428536133, 4505856912854, 13421957361110, 36720042483591, 93413954858887, 223160292749512, 504635269460168, 1087257506689929, 2244088888116105, 4457403807182266
Offset: 0

Views

Author

Zerinvary Lajos, Sep 27 2006

Keywords

Crossrefs

Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), A023002 (m=10), A123095 (m=11), this sequence (m=12), A181134 (m=13).

Programs

  • Magma
    [(&+[j^12: j in [0..n]]): j in [0..30]]; // G. C. Greubel, Jul 21 2021
  • Maple
    [seq(add(i^12, i=1..n), n=0..18)];
  • Mathematica
    Table[Sum[k^12, {k, n}], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
    Accumulate[Range[0,30]^12]  (* Harvey P. Dale, Apr 26 2011 *)
  • Python
    A123094_list, m = [0], [479001600, -2634508800, 6187104000, -8083152000, 6411968640, -3162075840, 953029440, -165528000, 14676024, -519156, 4094, -1, 0 , 0]
    for _ in range(10**2):
        for i in range(13):
            m[i+1]+= m[i]
        A123094_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
    
  • Sage
    [bernoulli_polynomial(n,13)/13 for n in range(1, 30)] # Zerinvary Lajos, May 17 2009
    

Formula

a(n) = n*A123095(n) - Sum_{i=0..n-1} A123095(i). - Bruno Berselli, Apr 27 2010
a(n) = n * (n+1) * (2*n+1) * (105*n^10 +525*n^9 +525*n^8 -1050*n^7 -1190*n^6 +2310*n^5 +1420*n^4 -3285*n^3 -287*n^2 +2073*n -691)/2730. - Bruno Berselli, Oct 03 2010
a(n) = (-1)*Sum_{j=1..12} j*Stirling1(n+1,n+1-j)*Stirling2(n+12-j,n). - Mircea Merca, Jan 25 2014

A123095 Sum of first n 11th powers.

Original entry on oeis.org

0, 1, 2049, 179196, 4373500, 53201625, 415998681, 2393325424, 10983260016, 42364319625, 142364319625, 427675990236, 1170684360924, 2962844754961, 7012409924625, 15662165784000, 33254351828416, 67526248136049, 131794658215281, 248284917113500, 453084917113500
Offset: 0

Views

Author

Zerinvary Lajos, Sep 27 2006

Keywords

Crossrefs

Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), A023002 (m=10), this sequence (m=11), A123094 (m=12), A181134 (m=13).

Programs

  • Magma
    [(&+[j^11: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Jul 21 2021
    
  • Maple
    [seq(add(i^11, i=1..n), n=0..20)];
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=a[n-1]+n^11 od: seq(a[n], n=0..13); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    Table[Sum[k^11, {k, n}], {n, 0, 30}] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2008 *)
    Accumulate[Range[0,20]^11] (* Harvey P. Dale, Sep 17 2021 *)
  • Python
    A123095_list, m = [0], [39916800, -199584000, 419126400, -479001600, 322494480, -129230640, 29607600, -3498000, 171006, -2046, 1, 0 , 0]
    for _ in range(10**2):
        for i in range(12):
            m[i+1]+= m[i]
        A123095_list.append(m[-1]) # Chai Wah Wu, Nov 05 2014
    
  • Sage
    [(bernoulli_polynomial(n+1, 12) - bernoulli(12))/12  for n in (0..30)] # G. C. Greubel, Jul 21 2021

Formula

a(n) = n*A023002(n) - Sum_{i=0..n-1} A023002(i). - Bruno Berselli, Apr 27 2010
a(n) = n^2*(n+1)^2*(2*n^8 +8*n^7 +4*n^6 -16*n^5 -5*n^4 +26*n^3 -3*n^2 -20*n +10)/24. - Bruno Berselli, Oct 03 2010
G.f.: x*(x^10 +2036*x^9 +152637*x^8 +2203488*x^7 +9738114*x^6 +15724248*x^5 +9738114*x^4 +2203488*x^3 +152637*x^2 +2036*x +1)/(1-x)^13. - Colin Barker, May 27 2012
a(n) = (-1)*Sum_{j=1..11} j*Stirling1(n+1,n+1-j)*Stirling2(n+11-j,n). - Mircea Merca, Jan 25 2014
a(n) = 1728*A006542(n+2)^2 + 216*A288876(n-2) + 96*A006542(n+2) + A000537(n). - Yasser Arath Chavez Reyes, May 25 2024

A181134 Sum of 13th powers: a(n) = Sum_{j=0..n} j^13.

Original entry on oeis.org

0, 1, 8193, 1602516, 68711380, 1289414505, 14350108521, 111239118928, 660994932816, 3202860761145, 13202860761145, 47725572905076, 154718778284148, 457593884876401, 1251308658130545, 3197503726489920
Offset: 0

Views

Author

Bruno Berselli, Oct 05 2010 - Oct 18 2010

Keywords

Comments

This form of recurrence is a general property of the array in A103438 (sums of the first n-th powers).

Crossrefs

Cf. A010801.
Sequences of the form Sum_{j=0..n} j^m : A000217 (m=1), A000330 (m=2), A000537 (m=3), A000538 (m=4), A000539 (m=5), A000540 (m=6), A000541 (m=7), A000542 (m=8), A007487 (m=9), A023002 (m=10), A123095 (m=11), A123094 (m=12), A181134 (m=13).

Programs

  • Magma
    [(&+[j^13: j in [0..n]]): n in [0..30]]; // G. C. Greubel, Jul 21 2021
    
  • Maple
    A181134 := proc(n) (bernoulli(14,n+1) - bernoulli(14))/14 ; end proc: seq(A181134(n), n=0..10); # R. J. Mathar, Oct 14 2010
  • Mathematica
    Accumulate[Range[0,20]^13] (* Harvey P. Dale, Oct 30 2017 *)
  • Python
    A181134_list, m = [0], [6227020800, -37362124800, 97037740800, -142702560000, 130456085760, -76592355840, 28805736960, -6711344640, 901020120, -60780720, 1569750, -8190, 1, 0 , 0]
    for _ in range(10**2):
        for i in range(14):
            m[i+1]+= m[i]
        A181134_list.append(m[-1]) # Chai Wah Wu, Nov 06 2014
    
  • Sage
    [(bernoulli_polynomial(n+1, 14) - bernoulli(14))/14  for n in (0..30)] # G. C. Greubel, Jul 21 2021

Formula

For n>0, a(n) = n*A123094(n) - Sum_{i=0..n-1} A123094(i), where Sum_{i=0..n-1} A123094(i) = A253712(n-1) = (n-1)*n^2*(n+1)*(30*n^10 - 425*n^8 + 2578*n^6 - 8147*n^4 + 12874*n^2 - 7601)/5460.
a(n) = a(-n-1) = (n*(n + 1))^2*(30*n^10 + 150*n^9 + 125*n^8 - 400*n^7 - 326*n^6 + 1052*n^5 + 367*n^4 - 1786*n^3 + 202*n^2 + 1382*n - 691)/420.
G.f.: see comment of Vladeta Jovovic in A000538.
a(n) = -Sum_{j=1..13} j*Stirling1(n+1,n+1-j)*Stirling2(n+13-j,n). - Mircea Merca, Jan 25 2014

A215077 Binomial convolution of sum of consecutive powers.

Original entry on oeis.org

0, 1, 7, 66, 852, 14020, 280472, 6609232, 179317056, 5505532992, 188717617280, 7143999854464, 296013377405440, 13325516967972352, 647610246703508480, 33794224057227356160, 1884620857353101983744, 111857608180484932648960, 7040178644779119413723136, 468349192560992552808841216, 32836927387372039917034405888
Offset: 0

Views

Author

Olivier Gérard, Aug 02 2012

Keywords

Comments

a(0) could alternatively be defined as 1 from the formula or the convention for 0^0.
This sum is remarkable for its three different decompositions involving powers and binomials (see formulas and cross-refs).

Crossrefs

Row sums of A215078, A215079, A215080.
See also A215083 and A215084.

Programs

  • Mathematica
    Table[Sum[Sum[j^n*Binomial[n, k], {j, 1, k}], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n)=sum(k=0,n, binomial(n,k)*sum(j=1,k, j^n)) \\ Charles R Greathouse IV, Jul 31 2016
    
  • PARI
    a(n)=my(P=sumformal('x^n)); sum(k=0,n, binomial(n,k)*subst(P,'x,k)) \\ Charles R Greathouse IV, Jul 31 2016

Formula

a(n) = Sum_{k=0..n} binomial(n,k)*Sum_{j=1..k} j^n;
a(n) = Sum_{k=0..n} binomial(n,k)*H_k^{-n}, where H_k^(-n) = k-th harmonic number of order -n;
a(n) = Sum_{k=0..n} k^n * Sum_{j=0..n-k} binomial(n,n-k-j);
a(n) = Sum_{k=0..n} k^n * binomial(n,n-k) * 2F1(1, k-n; k+1)(-1);
a(n) = Sum_{k=0..n} Sum_{j=0..k} (k-j)^n * binomial(n,j);
a(n) = Sum_{k=0..n} Sum_{j=0..n} (n-j)^n * binomial(n,n+k-j);
and the equivalent formulas obtained by symmetries of the binomial and the hypergeometric function as well as treating the zeroth term separately.
a(n) ~ n^n / (sqrt(1+r) * (1-r) * exp(n) * r^n), where r = A202357 = LambertW(exp(-1)). - Vaclav Kotesovec, Jun 10 2019

A215084 a(n) = sum of the sums of the k first n-th powers.

Original entry on oeis.org

0, 1, 6, 46, 470, 6035, 93436, 1695036, 35277012, 828707925, 21693441550, 626254969978, 19766667410282, 677231901484775, 25031756512858200, 992872579254244088, 42066929594261568840, 1896157095455962952169, 90601933352843530354170, 4574495282686422755339734, 243359175218492577008763726
Offset: 0

Views

Author

Olivier Gérard, Aug 02 2012

Keywords

Comments

First term a(0) may be computed as 1 by starting the inner sum at j=0 and taking the convention 0^0 = 1.

Examples

			a(3) = (1^3) + (1^3 + 2^3) + (1^3 + 2^3 + 3^3) = (1^3 + 1^3 + 1^3) + (2^3 + 2^3) + (3^3) = 3 * 1^3 + 2 * 2^3 + 1 * 3^3 = 46. - _David A. Corneth_, Jun 27 2018
		

Crossrefs

Row sums of A215083.

Programs

  • Mathematica
    Table[Sum[Sum[j^n, {j, 1, k}], {k, 0, n}], {n, 0, 20}]
    a[n_] := (n+1)*HarmonicNumber[-1, -n] - HarmonicNumber[n, -n-1] + (n+1)*HarmonicNumber[n, -n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 05 2013 *)
    Table[Total[Accumulate[Range[n]^n]],{n,0,20}] (* Harvey P. Dale, Mar 29 2020 *)
  • PARI
    a(n) = sum(k=1, n, sum(j=1, k, j^n)); \\ Michel Marcus, Jun 25 2018
    
  • PARI
    a(n) = sum(i=1, n, (n+1-i) * i^n); \\ David A. Corneth, Jun 27 2018

Formula

a(n) = Sum_{k=1..n} Sum_{j=1..k} j^n.
a(n) = Sum_{k=1..n} H_k^{-n} where H_k^{-n} is the k-th harmonic number of order -n.
a(n) = Sum_{k=1..n} (B(n+1, k+1) - B(n+1, 1))/(n+1), where B(n, x) are the Bernoulli polynomials. - Daniel Suteu, Jun 25 2018
G.f.: Sum_{k>=1} k^k*x^k/(1 - k*x)^2. - Ilya Gutkovskiy, Oct 11 2018
a(n) ~ c * n^n, where c = 1/(1 - 2*exp(-1) + exp(-2)) = 2.50265030107711874333... - Vaclav Kotesovec, Nov 06 2021

A215078 Triangle of sums of the first k n-th powers multiplied by binomial(n,k), read by rows.

Original entry on oeis.org

0, 0, 1, 0, 2, 5, 0, 3, 27, 36, 0, 4, 102, 392, 354, 0, 5, 330, 2760, 6500, 4425, 0, 6, 975, 15880, 73350, 123090, 67171, 0, 7, 2709, 81060, 654500, 2033325, 2637327, 1200304, 0, 8, 7196, 381808, 5064780, 25926824, 59992660, 63259168, 24684612, 0, 9, 18468, 1696464, 35574840, 281668590, 1034305524, 1896003648, 1681960464, 574304985, 0, 10, 46125, 7208880, 232816500, 2740317300, 14981494710, 42457884000, 64240088580, 49143419250, 14914341925
Offset: 0

Views

Author

Olivier Gérard, Aug 02 2012

Keywords

Comments

If one starts the sum at j=0, the initial term T(0,0) is 1.

Examples

			  0
  0  1
  0  2    5
  0  3   27       36
  0  4  102      392      354
  0  5  330     2760     6500     4425
  0  6  975    15880    73350   123090    67171
  0  7 2709    81060   654500  2033325  2637327  1200304
		

Crossrefs

Binomial convolution of A215083.
Cf. A215077 (row sums), A031971 (diagonal)

Programs

  • Maple
    A215078 := proc(n,k)
            binomial(n,k)*add(j^n,j=1..k) ;
    end proc:
    seq(seq(A215078(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Jan 27 2023
  • Mathematica
    Flatten[Table[Table[Sum[j^n, {j, 1, k}]*Binomial[n, k], {k, 0, n}], {n, 0, 10}], 1]

Formula

T(n,k) = binomial(n,k)*sum(j^n, j=1..k)

A292900 Triangle read by rows, a generalization of the Bernoulli numbers, the numerators for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 1, -4, 0, 0, -1, 47, -10, -1, 0, 1, -221, 205, -209, 0, 0, -1, 953, -5495, 10789, -427, 1, 0, 1, -3953, 123445, -8646163, 177093, -22807, 0, 0, -1, 16097, -2534735, 22337747, -356249173, 3440131, -46212, -1
Offset: 0

Views

Author

Peter Luschny, Oct 01 2017

Keywords

Comments

The diagonal B(n, n) gives the Bernoulli numbers B_n = B_n(1). The formula is due to L. Kronecker and the generalization to Fukuhara, Kawazumi and Kuno.

Examples

			The triangle T(n, k) begins:
[0], 1
[1], 0,  1
[2], 0, -1,     1
[3], 0,  1,    -4,        0
[4], 0, -1,    47,      -10,       -1
[5], 0,  1,  -221,      205,     -209,          0
[6], 0, -1,   953,    -5495,    10789,       -427,       1
[7], 0,  1, -3953,   123445, -8646163,     177093,  -22807,      0
[8], 0, -1, 16097, -2534735, 22337747, -356249173, 3440131, -46212, -1
The rational triangle B(n, k) begins:
[0], 1
[1], 0,  1/2
[2], 0, -1/2,      1/6
[3], 0,  1/2,     -4/3,          0
[4], 0, -1/2,    47/12,      -10/3,         -1/30
[5], 0,  1/2,  -221/24,      205/9,       -209/20,          0
[6], 0, -1/2,   953/48,   -5495/54,      10789/80,    -427/10,       1/42
[7], 0,  1/2, -3953/96, 123445/324, -8646163/8640, 177093/200, -22807/105, 0
		

Crossrefs

Cf. A292901 (denominators), B(n, n) = A164555(n)/A027642(n), A215083.

Programs

  • Maple
    B := (n, k) -> `if`(n = 0, 1, add(((-1)^(j-n)/(j+1))*binomial(k+1, j+1)*add(i^n*(j-i+1)^(k-n), i=0..j), j=0..k)):
    for n from 0 to 8 do seq(numer(B(n,k)), k=0..n) od;
  • Mathematica
    B[0, 0] = 1; B[n_, k_] := Sum[(-1)^(j-n)/(j+1)*Binomial[k+1, j+1]* Sum[i^n*(j-i+1)^(k-n) , {i, 0, j}] , {j, 0, k}];
    Table[B[n, k] // Numerator, {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 19 2018, from Maple *)

Formula

B(n, k) = Sum_{j=0..k}(((-1)^(j-n)/(j+1))*binomial(k+1, j+1)*Sum_{i=0..j}(i^n*(j-i+1)^(k-n))) if n >= 1 and B(0, 0) = 1.
B_n = B(n, n) = Sum_{j=0..n}((-1)^(n-j)/(j+1))*binomial(n+1,j+1)*(Sum_{i=0..j}i^n).
T(n, k) = numerator(B(n, k)).

A367416 Triangle read by rows: T(n,k) = number of solutions to +- 1^k +- 2^k +- 3^k +- ... +- n^k is a k-th power, n >= 2.

Original entry on oeis.org

4, 8, 1, 16, 1, 32, 0, 2, 64, 6, 128, 8, 256, 16, 4, 512, 26, 1024, 17, 10, 2048, 67, 4, 3, 4096, 100, 10, 8192, 137, 34, 6, 16384, 426, 28, 1, 32768, 661, 96, 6, 65536, 1351, 146, 16, 8, 131072, 2637, 230, 15, 262144, 3831, 258, 40, 524288, 8095, 1130, 50
Offset: 2

Views

Author

Jean-Marc Rebert, Jan 26 2024

Keywords

Comments

In the case of n = 1, there are solutions for all k. In particular, 1^k is always a k-th power and -(1^k) is a k-th power for odd k. As a formula: T(1,k) = 1 + (k mod 2). This row is not included in the sequence.

Examples

			Triangle begins:
            k = 1      2     3   4  5
  n= 2:         4;
  n= 3:         8,     1;
  n= 4:        16,     1;
  n= 5:        32,     0,    2;
  n= 6:        64,     6;
  n= 7:       128,     8;
  n= 8:       256,    16,    4;
  n= 9:       512,    26;
  n=10:      1024,    17,   10;
  n=11:      2048,    67,    4,  3;
  n=12:      4096,   100,   10;
  n=13:      8192,   137,   34,  6;
  n=14:     16384,   426,   28,  1;
  n=15:     32768,   661,   96,  6;
  n=16:     65536,  1351,  146, 16, 8;
  n=17:    131072,  2637,  230, 15;
  n=18:    262144,  3831,  258, 40;
  n=19:    524288,  8095, 1130, 50;
  n=20:   1048576, 15241,  854, 77, 6;
  ...
The T(6,2) = 6 solutions are:
  - 1^2 - 2^2 + 3^2 - 4^2 + 5^2 + 6^2 = 49 = 7^2,
  - 1^2 - 2^2 + 3^2 + 4^2 + 5^2 - 6^2 =  9 = 3^2,
  - 1^2 - 2^2 + 3^2 + 4^2 + 5^2 + 6^2 = 81 = 9^2,
  + 1^2 - 2^2 + 3^2 - 4^2 - 5^2 + 6^2 =  1 = 1^2,
  + 1^2 + 2^2 - 3^2 + 4^2 + 5^2 - 6^2 =  1 = 1^2,
  + 1^2 + 2^2 + 3^2 - 4^2 - 5^2 + 6^2 =  9 = 3^2.
		

Crossrefs

Programs

  • PARI
    f(k,u)=my(x=0,v=vector(#u));for(i=1,#u,u[i]=if(u[i]==0,-1,1);v[i]=i^k);u*v~
    is(k,u)=my(x=f(k,u));ispower(x,k)
    T(n,k)=my(u=vector(n,i,[0,1]),nbsol=0);if(k%2==1,u[1]=[1,1]);forvec(X=u,if(is(k,X),nbsol++));if(k%2==1,nbsol*=2);nbsol
Showing 1-9 of 9 results.