cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215091 Power floor-ceiling sequence of sqrt(5).

Original entry on oeis.org

2, 5, 11, 25, 55, 123, 275, 615, 1375, 3075, 6875, 15373, 34375, 76865, 171875, 384325, 859376, 1921624, 4296881, 9608119, 21484407, 48040595, 107422036, 240202975, 537110180, 1201014874, 2685550900, 6005074370, 13427754501
Offset: 0

Views

Author

Clark Kimberling, Nov 10 2012

Keywords

Comments

See A214992 for a discussion of power floor-ceiling sequence and the power floor-ceiling function, p2(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = sqrt(5), and the limit p2(r) = 2.20000329748317471983660768168522753590...

Examples

			a(0) = floor(r) = 2, where r = sqrt(5);
a(1) = ceiling(2*r) = 5; a(2) = floor(5*r) = 11.
		

Crossrefs

Programs

  • Mathematica
    (See A214999.)
    nxt[{n_,a_}]:={n+1,If[OddQ[n],Floor[Sqrt[5]*a],Ceiling[Sqrt[5]*a]]}; Transpose[ NestList[nxt,{0,2},30]][[2]] (* Harvey P. Dale, Oct 27 2015 *)

Formula

a(n) = ceiling(x*a(n-1)) if n is odd, a(n) = floor(x*a(n-1)) if n is even, where x = sqrt(5) and a(0) = floor(x).