A215112 a(n) = -2*a(n-1) + a(n-2) + a(n-3) with a(0)=a(1)=-1, a(2)=1.
-1, -1, 1, -4, 8, -19, 42, -95, 213, -479, 1076, -2418, 5433, -12208, 27431, -61637, 138497, -311200, 699260, -1571223, 3530506, -7932975, 17825233, -40052935, 89998128, -202223958, 454393109, -1021012048, 2294193247, -5155005433, 11583192065
Offset: 0
References
- R. Witula, E. Hetmaniok, D. Slota, Sums of the powers of any order roots taken from the roots of a given polynomial, Proceedings of the Fifteenth International Conference on Fibonacci Numbers and Their Applications, Eger, Hungary, 2012.
Links
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5.
- Roman Witula, Full Description of Ramanujan Cubic Polynomials, Journal of Integer Sequences, Vol. 13 (2010), Article 10.5.7.
- Roman Witula, Ramanujan Cubic Polynomials of the Second Kind, Journal of Integer Sequences, Vol. 13 (2010), Article 10.7.5.
- Roman Witula, Ramanujan Type Trigonometric Formulae, Demonstratio Math. 45 (2012) 779-796.
- Index entries for linear recurrences with constant coefficients, signature (-2,1,1).
Crossrefs
Cf. A214683.
Programs
-
Mathematica
LinearRecurrence[{-2, 1, 1}, {-1, -1, 1}, 40]
Formula
G.f.: (1+3*x)/(-1-2*x+x^2+x^3).
Comments