A215114 G.f. satisfies: A(x) = x + 2*x^2 + x*A(A(A(x))).
1, 3, 9, 81, 891, 11907, 184437, 3199581, 60932007, 1257133527, 27836230041, 656867748537, 16429561047891, 433686821472747, 12038953175046909, 350402975398982133, 10665927632978564895, 338769129913521564735, 11205026468737167058785
Offset: 1
Keywords
Examples
G.f.: A(x) = x + 3*x^2 + 9*x^3 + 81*x^4 + 891*x^5 + 11907*x^6 + 184437*x^7 +... where A(A(A(x))) = x + 9*x^2 + 81*x^3 + 891*x^4 + 11907*x^5 + 184437*x^6 +... Related expansions. Let C(C(C(x))) = A(x), then C(x) is an integer series where: C(x) = x + x^2 + x^3 + 19*x^4 + 163*x^5 + 2269*x^6 + 34093*x^7 +... where the coefficients of C(x) are congruent to 1 modulo 9.
Programs
-
PARI
{a(n)=local(A=x+3*x^2); for(i=1, n, A=x+2*x^2+x*subst(A, x, subst(A, x, A+x*O(x^n)))); polcoeff(A, n)} for(n=1, 31, print1(a(n), ", "))
Formula
G.f. satisfies: A(x) = G(x)/G(G(x)) - 1 - G(G(x)) where A(G(x)) = x.
Comments