A215117
G.f. A(x) satisfies: A(A(A(A(x)))) = G(x) where G(x) = x + 3*x^2 + x*G(G(G(G(x)))) is the g.f. of A215116.
Original entry on oeis.org
1, 1, 1, 49, 721, 17281, 452065, 13511953, 443435185, 15816390241, 606861668161, 24867738772849, 1082158542264721, 49785517156216897, 2412544311495241633, 122762020478952148177, 6542028190536528941425, 364254737003651267997985, 21146448814786605196994305
Offset: 1
G.f.: A(x) = x + x^2 + x^3 + 49*x^4 + 721*x^5 + 17281*x^6 + 452065*x^7 +...
Let G(x) = A(A(A(A(x)))):
G(x) = x + 4*x^2 + 16*x^3 + 256*x^4 + 4864*x^5 + 111616*x^6 + 2983936*x^7 +...
such that G(x) = x + 3*x^2 + x*G(G(G(G(x)))):
G(G(G(G(x)))) = x + 16*x^2 + 256*x^3 + 4864*x^4 + 111616*x^5 + 2983936*x^6 +...
-
{a(n)=local(A=x+x^2,B=x+4*x^2);for(i=1,n+1,B=x+3*x^2+x*subst(B,x,subst(B,x,subst(B,x,B+x^2*O(x^n)))));
for(j=1, n+1, A=round((3*A+subst(B, x, serreverse(subst(A,x,subst(A,x,A+x^2*O(x^n))))))/4));; polcoeff(A, n)}
for(n=1, 31, print1(a(n), ", "))
A213010
G.f. satisfies: A(x) = x+x^2 + x*A(A(x)).
Original entry on oeis.org
1, 2, 4, 16, 80, 480, 3296, 25152, 209600, 1884160, 18110080, 184898304, 1994964736, 22654449664, 269855506944, 3362350046208, 43715434232832, 591812683833344, 8326660788725760, 121550217508892672, 1838089917983911936, 28753297176215257088, 464675647688625364992
Offset: 1
G.f.: A(x) = x + 2*x^2 + 4*x^3 + 16*x^4 + 80*x^5 + 480*x^6 + 3296*x^7 +...
where
A(A(x)) = x + 4*x^2 + 16*x^3 + 80*x^4 + 480*x^5 + 3296*x^6 +...
Related expansions.
Let B(B(x)) = A(x), then B(x) is an integer series:
B(x) = x + x^2 + x^3 + 5*x^4 + 21*x^5 + 125*x^6 + 825*x^7 + 6133*x^8 +...
where the coefficients of B(x) are congruent to 1 modulo 4.
-
{a(n)=local(A=x+2*x^2);for(i=1,n,A=x+x^2+x*subst(A,x,A+x*O(x^n)));polcoeff(A,n)}
for(n=1,31,print1(a(n),", "))
A215114
G.f. satisfies: A(x) = x + 2*x^2 + x*A(A(A(x))).
Original entry on oeis.org
1, 3, 9, 81, 891, 11907, 184437, 3199581, 60932007, 1257133527, 27836230041, 656867748537, 16429561047891, 433686821472747, 12038953175046909, 350402975398982133, 10665927632978564895, 338769129913521564735, 11205026468737167058785
Offset: 1
G.f.: A(x) = x + 3*x^2 + 9*x^3 + 81*x^4 + 891*x^5 + 11907*x^6 + 184437*x^7 +...
where
A(A(A(x))) = x + 9*x^2 + 81*x^3 + 891*x^4 + 11907*x^5 + 184437*x^6 +...
Related expansions.
Let C(C(C(x))) = A(x), then C(x) is an integer series where:
C(x) = x + x^2 + x^3 + 19*x^4 + 163*x^5 + 2269*x^6 + 34093*x^7 +...
where the coefficients of C(x) are congruent to 1 modulo 9.
-
{a(n)=local(A=x+3*x^2); for(i=1, n, A=x+2*x^2+x*subst(A, x, subst(A, x, A+x*O(x^n)))); polcoeff(A, n)}
for(n=1, 31, print1(a(n), ", "))
A215118
G.f. satisfies: A(x) = x + 4*x^2 + x*A(A(A(A(A(x))))).
Original entry on oeis.org
1, 5, 25, 625, 18125, 628125, 25390625, 1158515625, 58308203125, 3190470703125, 187941103515625, 11832996337890625, 791834056298828125, 56063448811767578125, 4184231129351806640625, 328154000925299072265625, 26970505516268341064453125, 2317475342690856231689453125
Offset: 1
G.f.: A(x) = x + 5*x^2 + 25*x^3 + 625*x^4 + 18125*x^5 + 628125*x^6 + ...
where
A(A(A(A(x)))) = x + 25*x^2 + 625*x^3 + 18125*x^4 + 628125*x^5 + ...
Related expansions.
Let E(E(E(E(E(x))))) = A(x), then E(x) is an integer series where:
E(x) = x + x^2 + x^3 + 101*x^4 + 2301*x^5 + 82601*x^6 + 3287001*x^7 + ...
where the coefficients of E(x) are congruent to 1 modulo 100.
-
{a(n) = my(A=x+4*x^2); for(i=1,n,A=x+4*x^2+x*subst(A,x,subst(A,x,subst(A,x,subst(A,x,A+x*O(x^n)))))); polcoef(A, n)}
for(n=1, 31, print1(a(n), ", "))
Showing 1-4 of 4 results.
Comments