A215118 G.f. satisfies: A(x) = x + 4*x^2 + x*A(A(A(A(A(x))))).
1, 5, 25, 625, 18125, 628125, 25390625, 1158515625, 58308203125, 3190470703125, 187941103515625, 11832996337890625, 791834056298828125, 56063448811767578125, 4184231129351806640625, 328154000925299072265625, 26970505516268341064453125, 2317475342690856231689453125
Offset: 1
Keywords
Examples
G.f.: A(x) = x + 5*x^2 + 25*x^3 + 625*x^4 + 18125*x^5 + 628125*x^6 + ... where A(A(A(A(x)))) = x + 25*x^2 + 625*x^3 + 18125*x^4 + 628125*x^5 + ... Related expansions. Let E(E(E(E(E(x))))) = A(x), then E(x) is an integer series where: E(x) = x + x^2 + x^3 + 101*x^4 + 2301*x^5 + 82601*x^6 + 3287001*x^7 + ... where the coefficients of E(x) are congruent to 1 modulo 100.
Programs
-
PARI
{a(n) = my(A=x+4*x^2); for(i=1,n,A=x+4*x^2+x*subst(A,x,subst(A,x,subst(A,x,subst(A,x,A+x*O(x^n)))))); polcoef(A, n)} for(n=1, 31, print1(a(n), ", "))
Comments