A215122 Number T(n,k) of solid standard Young tableaux of shape [[(n-k)*k,k],[n-k]]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 0, 0, 2, 0, 0, 8, 8, 0, 0, 30, 174, 30, 0, 0, 112, 2084, 2084, 112, 0, 0, 420, 21025, 52808, 21025, 420, 0, 0, 1584, 194064, 994788, 994788, 194064, 1584, 0, 0, 6006, 1694224, 16074586, 31497284, 16074586, 1694224, 6006, 0
Offset: 0
Examples
Triangle T(n,k) begins: 1; 0, 0; 0, 2, 0; 0, 8, 8, 0; 0, 30, 174, 30, 0; 0, 112, 2084, 2084, 112, 0; 0, 420, 21025, 52808, 21025, 420, 0; 0, 1584, 194064, 994788, 994788, 194064, 1584, 0;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
- S. B. Ekhad, D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, arXiv:1202.6229v1 [math.CO], 2012
- Wikipedia, Young tableau
Crossrefs
Programs
-
Maple
b:= proc(x, y, z) option remember; `if`(z
y and x>z, b(x-1, y, z), 0)+ `if`(y>0, b(x, y-1, z), 0)+ `if`(z>0, b(x, y, z-1), 0))) end: T:= (n, k)-> `if`(k=0 xor k=n, 0, b((n-k)*k, k, n-k)): seq(seq(T(n, k), k=0..n), n=0..10); -
Mathematica
b[x_, y_, z_] := b[x, y, z] = If[z
y && x>z, b[x-1, y, z], 0] + If[y>0, b[x, y-1, z], 0] + If[z>0, b[x, y, z-1], 0]]]; T[n_, k_] := If[k == 0 || k == n, 0, b[(n-k)*k, k, n-k]]; T[0, 0] = 1; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jan 19 2015, after Alois P. Heinz *)