A215148 a(n) = 23*n + 1.
1, 24, 47, 70, 93, 116, 139, 162, 185, 208, 231, 254, 277, 300, 323, 346, 369, 392, 415, 438, 461, 484, 507, 530, 553, 576, 599, 622, 645, 668, 691, 714, 737, 760, 783, 806, 829, 852, 875, 898, 921, 944, 967, 990, 1013, 1036, 1059, 1082, 1105, 1128, 1151, 1174
Offset: 0
Links
- Jeremy Gardiner, Table of n, a(n) for n = 0..999
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
I:=[1,24]; [n le 2 select I[n] else 2*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Apr 19 2018
-
Mathematica
Range[1, 1000, 23] LinearRecurrence[{2,-1}, {1,24}, 50] (* G. C. Greubel, Apr 19 2018 *)
-
PARI
for(n=0, 50, print1(23*n + 1, ", ")) \\ G. C. Greubel, Apr 19 2018
Formula
From G. C. Greubel, Apr 19 2018: (Start)
a(n) = 2*a(n-1) - a(n-2).
G.f.: (1+22*x)/(1-x)^2.
E.g.f.: (23*x + 1)*exp(x). (End)