A215150 Pseudoprimes divisible by a smaller pseudoprime.
13981, 18705, 23001, 55245, 63973, 72885, 75361, 107185, 126217, 129921, 137149, 157641, 158369, 172081, 176149, 188461, 215265, 266305, 272251, 276013, 278545, 285541, 294409, 348161, 387731, 423793, 464185, 488881, 493697, 617093, 625921, 743665, 748657, 825265
Offset: 1
Keywords
Examples
Since 2^13980 = 1 mod 13981 and 13981 = 11 * 31 * 41, 13981 is a pseudoprime, and it is divisible by 341, a smaller pseudoprime. 13981 is therefore in the sequence. The pseudoprimes 75361, 129921, 348161, etc., are also divisible by 341.
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1000
- G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 13981
- Eric Weisstein's World of Mathematics, Poulet Number
- Index entries for sequences related to pseudoprimes
Programs
-
Mathematica
lst1 = {}; lst2 = {}; r = 10^6; Do[If[! PrimeQ[n] && PowerMod[2, n - 1, n] == 1, AppendTo[lst1, n]], {n, 1, r, 2}]; l = Length[lst1]; Do[p = lst1[[a]]; b = 1; While[True, t = lst1[[b]]; If[p < 3*t, Break[]]; If[Divisible[p, t], AppendTo[lst2, p]; Break[]]; b++], {a, 2, l}]; lst2
Comments