A215197 Numbers k such that k and k + 1 are both of the form p*q^4 where p and q are distinct primes.
2511, 7856, 10287, 15471, 15632, 18063, 20816, 28592, 36368, 40816, 54512, 75248, 88047, 93231, 101168, 126927, 134703, 160624, 163376, 170991, 178767, 210032, 215216, 217808, 220624, 254096, 256527, 274671, 280624, 292976, 334448, 347408, 443151, 482192
Offset: 1
Keywords
Examples
2511 is a member as 2511 = 31*3^4 and 2512 = 157*2^4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory):for n from 3 to 500000 do:x:=factorset(n):y:=factorset(n+1):n1:=nops(x):n2:=nops(y):if n1=2 and n2=2 then xx1:=x[1]*x[2]^4 : xx2:=x[2]*x[1]^4:yy1:=y[1]*y[2]^4: yy2:=y[2]*y[1]^4:if (xx1=n or xx2=n) and (yy1=n+1 or yy2=n+1) then printf("%a, ", n):else fi:fi:od:
-
Mathematica
lst={}; Do[f1=FactorInteger[n]; If[Sort[Transpose[f1][[2]]]=={1, 4}, f2=FactorInteger[n+1]; If[Sort[Transpose[f2][[2]]]=={1, 4}, AppendTo[lst, n]]], {n, 3, 55000}]; lst (* First run program for A178739 *) Select[A178739, MemberQ[A178739, # + 1] &] (* Alonso del Arte, Aug 05 2012 *)
-
PARI
is(n)=numdiv(n)==10 && numdiv(n+1)==10 \\ Charles R Greathouse IV, Jun 19 2016
-
PARI
is(n)=vecsort(factor(n)[,2])==[1,4]~ && vecsort(factor(n+1)[,2])==[1,4]~ \\ Charles R Greathouse IV, Jun 19 2016
Comments