A215203 a(0) = 0, a(n) = a(n - 1)*2^(n + 1) + 2^n - 1. That is, add one 0 and n 1's to the binary representation of previous term.
0, 1, 11, 183, 5871, 375775, 48099263, 12313411455, 6304466665215, 6455773865180671, 13221424875890015231, 54154956291645502388223, 443637401941159955564326911, 7268555193403964711965932118015, 238176016577461115681699663643131903
Offset: 0
Examples
Binary representations: a(0): 0; a(1): 1; a(2): 1011; a(3): 10110111; a(4): 1011011101111; a(5): 1011011101111011111; a(6): 10110111011110111110111111; a(7): 1011011101111011111011111101111111; a(8): 1011011101111011111011111101111111011111111, etc.
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..80
Crossrefs
Programs
-
Mathematica
nxt[{n_,a_}]:={n+1,FromDigits[Join[IntegerDigits[a,2],PadRight[{0},n+2,1]],2]}; NestList[nxt,{0,0},15][[All,2]] (* Harvey P. Dale, Feb 11 2023 *)
-
Python
a = 0 for n in range(1, 10): print(a, end=', ') a = a*(2**(n+1)) + 2**n - 1