A215204 Number A(n,k) of solid standard Young tableaux of cylindrical shape lambda X k, where lambda ranges over all partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 4, 4, 5, 1, 1, 10, 26, 10, 7, 1, 1, 28, 276, 258, 26, 11, 1, 1, 84, 3740, 14318, 3346, 76, 15, 1, 1, 264, 58604, 1161678, 1214358, 54108, 232, 22, 1, 1, 858, 1010616, 118316062, 741215012, 150910592, 1054256, 764, 30
Offset: 0
Examples
Square array A(n,k) begins: : 1, 1, 1, 1, 1, 1, ... : 1, 1, 1, 1, 1, 1, ... : 2, 2, 4, 10, 28, 84, ... : 3, 4, 26, 276, 3740, 58604, ... : 5, 10, 258, 14318, 1161678, 118316062, ... : 7, 26, 3346, 1214358, 741215012, 620383261034, ... : 11, 76, 54108, 150910592, 840790914296, 7137345113624878, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..15, flattened
- S. B. Ekhad and D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, arXiv:1202.6229v1 [math.CO], 2012
- Wikipedia, Young tableau
Crossrefs
Programs
-
Maple
b:= proc(l) option remember; local m; m:= nops(l); `if`({map(x-> x[], l)[]}minus{0}={}, 1, add(add(`if`(l[i][j]> `if`(i=m or nops(l[i+1])
`if`(nops(l[i])=j, 0, l[i][j+1]), b(subsop(i=subsop( j=l[i][j]-1, l[i]), l)), 0), j=1..nops(l[i])), i=1..m)) end: g:= proc(n, i, k, l) `if`(n=0 or i=1, b(map(x-> [k$x], [l[], 1$n])), add(g(n-i*j, i-1, k, [l[], i$j]), j=0..n/i)) end: A:= (n, k)-> g(n, n, k, []): seq(seq(A(n, d-n), n=0..d), d=0..10); -
Mathematica
b[l_] := b[l] = With[{m = Length[l]}, If[Union[l // Flatten] ~Complement~ {0} == {}, 1, Sum[Sum[If[l[[i, j]] > If[i == m || Length[l[[i + 1]]] < j, 0, l[[i + 1, j]]] && l[[i, j]] > If[Length[l[[i]]] == j, 0, l[[i, j + 1]]], b[ReplacePart[l, i -> ReplacePart[l[[i]], j -> l[[i, j]] - 1]]], 0], {j, 1, Length[l[[i]]]}], {i, 1, m}]]]; g[n_, i_, k_, l_] := If[n == 0 || i == 1, b[Table[k, {#}]& /@ Join[l, Table[1, {n}]]], Sum[g[n - i*j, i - 1, k, Join[l, Table[i, {j}]]], {j, 0, n/i}]]; A[n_, k_] := g[n, n, k, {}]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Sep 24 2022, after Alois P. Heinz *)