A215216 Coefficient triangle of the Hermite-Bell polynomials for power -2.
1, 2, 4, -6, 8, -36, 24, 16, -144, 300, -120, 32, -480, 2040, -2640, 720, 64, -1440, 10320, -27720, 25200, -5040, 128, -4032, 43680, -199920, 383040, -262080, 40320, 256, -10752, 163968, -1142400, 3764880, -5503680, 2963520, -362880
Offset: 0
Examples
Let us put W(n;x):=H(n;-2;sqrt(x)). Then we have W(0;x)=1, W(1;x)=2, W(2;x)=4-6*x, W(3;x)=8-36*x+24*x^2, W(4;x)=16-144*x+300*x^2-120*x^3, W(5;x)=32-480*x+2040*x^2-2640*x^3+720*x^4. 1; 2; 4, -6; 8, -36, 24; 16, -144, 300, -120; 32, -480, 2040, -2640, 720; 64, -1440, 10320, -27720, 25200, -5040; 128, -4032, 43680, -199920, 383040, -262080, 40320;
References
- R. Witula, E. Hetmaniok, D. Slota, The Hermite-Bell polynomials for negative powers, (submitted, 2012)
Links
- D. Dominici, Asymptotic analysis of generalized Hermite polynomials, arXiv:math/0606324 [math.CA], 2006
- D. Dominici, Asymptotic analysis of generalized Hermite polynomials, Analysis 28 (2008), 239-261.
- R. B. Paris, The asymptotics of the generalised Hermite-Bell polynomials, J. Comput. Appl. Math. 232 (2009), 216-226.
Crossrefs
Cf. A066667.
Programs
-
Maple
H := proc(n,r,x) local e,d ; e := exp(-1/x^r) ; for d from 1 to n do e := diff(e,x) ; end do: x^((r+1)*n)*exp(1/x^r)*e ; expand(%) ; end proc: A215216 := proc(n,k) subs(x=sqrt(x),H(n,2,x)) ; coeftayl( %,x=0,k) ; end proc: seq(seq( A215216(n,k),k=0..max(0,n-1)),n=0..6) ; # R. J. Mathar, Aug 07 2012
-
Mathematica
H[n_, r_, x_] := Module[{e, d }, e = Exp[-1/x^r]; For[d = 1, d <= n, d++, e = D[e, x]]; x^((r + 1)*n)*Exp[1/x^r]*e // Expand]; A215216[n_, k_] := H[n, 2, x] /. x -> Sqrt[x] // SeriesCoefficient[#, {x, 0, k}]&; Table[A215216[n, k], {n, 0, 8}, {k, 0, Max[0, n - 1]}] // Flatten (* Jean-François Alcover, Nov 24 2017, after R. J. Mathar *)
Formula
H(n+1;-2;x) = (2-3*n*x^2)*H(n;-2;x) + x^3*(dH(n;-2;x)/dx), with H(1;-2;x)=2.
Comments