A215219 Number of (indecomposable or decomposable) Type II binary self-dual codes of length 8n with the highest minimal distance.
1, 1, 2, 1, 5, 16470, 1
Offset: 0
Keywords
Links
- Koichi Betsumiya, Masaaki Harada and Akihiro Munemasa, A Complete Classification of Doubly Even Self-Dual Codes of Length 40, arXiv:1104.3727v3 [math.CO], v3, Aug 02, 2012. - From _Jonathan Vos Post_, Aug 06 2012
- J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53. [DOI] MR0558873
- J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A60 (1992), 183-195 (Abstract, pdf, ps, Table A, Table D).
- S. K. Houghten, C. W. H. Lam, L. H. Thiel and J. A. Parker, The extended quadratic residue code is the only (48,24,12) self-dual doubly-even code, IEEE Trans. Inform. Theory, 49 (2003), 53-59.
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic. 11 (2005), 451-490. [DOI]
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746. [DOI] MR0514353
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
Extensions
a(6) = 1 (due to Houghten et al.) from Akihiro Munemasa, Aug 08 2012
Comments