A215220 Number of solid standard Young tableaux of shape [[n,n,n,n],[n]].
1, 4, 456, 143164, 75965484, 55824699632, 51274161733160, 55418842406649988, 67819708829687672202, 91539069926354814114556, 133752944758581353219955762, 208673064320580765981337783096, 343997162091593719562479905281938, 594344377404793356460064021706935470
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..40
- S. B. Ekhad, D. Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux, arXiv:1202.6229v1 [math.CO], 2012
- Wikipedia, Young tableau
Crossrefs
Column k=4 of A214722.
Programs
-
Maple
b:= proc(w, x, y, z, u) option remember; `if`({w, x, y, z, u}={0}, 1, `if`(w>x and w>u, b(w-1, x, y, z, u), 0)+ `if`(x>y, b(w, x-1, y, z, u), 0)+ `if`(y>z, b(w, x, y-1, z, u), 0)+ `if`(z>0, b(w, x, y, z-1, u), 0)+ `if`(u>0, b(w, x, y, z, u-1), 0)) end: a:= n-> b(n$5): seq(a(n), n=0..20);
-
Mathematica
b[w_, x_, y_, z_, u_] := b[w, x, y, z, u] = If[Union@{w, x, y, z, u} == {0}, 1, If[w > x && w > u, b[w - 1, x, y, z, u], 0] + If[x > y, b[w, x - 1, y, z, u], 0] + If[y > z, b[w, x, y - 1, z, u], 0] + If[z > 0, b[w, x, y, z - 1, u], 0] + If[u > 0, b[w, x, y, z, u - 1], 0]]; a[n_] := b[n, n, n, n, n]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 08 2017, translated from Maple *)