cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215222 Number of solutions to n = Sum_{i=1..pi(n-1)} c(i)*p(i) with c(i) in {-1,0,1}, p(n) = n-th prime and pi = A000720.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 1, 5, 5, 13, 12, 11, 11, 29, 28, 74, 73, 71, 69, 184, 182, 176, 173, 170, 164, 446, 437, 1180, 1165, 1147, 1137, 1115, 1104, 2984, 2949, 2919, 2887, 7841, 7778, 21331, 21184, 21029, 20861, 57465, 57114, 56741, 56372, 55997, 55610
Offset: 1

Views

Author

Alois P. Heinz, Aug 06 2012

Keywords

Examples

			a(5) = 1: 5 = 3+2.
a(6) = 1: 6 = 5+3-2.
a(7) = 1: 7 = 5+2.
a(8) = 2: 8 = 5+3 = 7+3-2.
a(9) = 2: 9 = 7+2 = 7+5-3.
a(10) = 3: 10 = 5+3+2 = 7+3 = 7+5-2.
a(11) = 1: 11 = 7+5-3+2.
a(12) = 5: 12 = 7+3+2 = 7+5 = 11+3-2 = 11-7+5+3 = 11+7-5-3+2.
		

Crossrefs

Programs

  • Maple
    sp:= proc(n) option remember; `if`(n=0, 0, ithprime(n)+sp(n-1)) end:
    b := proc(n, i) option remember; `if`(n>sp(i), 0, `if`(i=0, 1, b(n, i-1)+
            b(n+ithprime(i), i-1)+ b(abs(n-ithprime(i)), i-1)))
         end:
    a:= n-> b(n, numtheory[pi](n-1)):
    seq(a(n), n=1..60);
  • Mathematica
    sp[n_] := sp[n] = If[n == 0, 0, Prime[n]+sp[n-1]]; b[n_, i_] := b[n, i] = If[n>sp[i], 0, If[i == 0, 1, b[n, i-1] + b[n+Prime[i], i-1] + b[Abs[n-Prime[i]], i-1]]]; a[n_] := b[n, PrimePi[n-1]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Dec 03 2014, after Alois P. Heinz *)