cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215287 Number of permutations of 0..floor((n*3-1)/2) on even squares of an n X 3 array such that each row and column of even squares is increasing.

Original entry on oeis.org

1, 3, 10, 30, 140, 420, 2310, 6930, 42042, 126126, 816816, 2450448, 16628040, 49884120, 350574510, 1051723530, 7595781050, 22787343150, 168212023980, 504636071940, 3792416540640, 11377249621920, 86787993910800, 260363981732400, 2011383287449200
Offset: 1

Views

Author

R. H. Hardin, Aug 07 2012

Keywords

Comments

Also Schröder paths of length n having floor(n/2) peaks. - Peter Luschny, Sep 30 2018

Examples

			Some solutions for n=5:
  0 x 4   0 x 5   1 x 3   0 x 1   0 x 3   1 x 4   0 x 2
  x 3 x   x 1 x   x 0 x   x 4 x   x 2 x   x 0 x   x 1 x
  1 x 5   2 x 6   2 x 5   2 x 3   1 x 6   2 x 5   3 x 5
  x 7 x   x 3 x   x 6 x   x 6 x   x 5 x   x 6 x   x 6 x
  2 x 6   4 x 7   4 x 7   5 x 7   4 x 7   3 x 7   4 x 7
		

Crossrefs

Column 3 of A215292.

Programs

  • Magma
    [(n-(n div 2)+1)*Factorial(2*n-(n div 2)) / (Factorial(n-(n div 2) +1)^2*Factorial((n div 2))): n in [1..30]]; // Vincenzo Librandi, Oct 01 2018
  • Maple
    T := (n, k) -> (n-k+1)*(2*n-k)!/((n-k+1)!^2*k!):
    a := n -> T(n, floor(n/2)): seq(a(n), n = 1..23); # Peter Luschny, Sep 30 2018
  • Mathematica
    Table[(n - Floor[n/2] + 1) (2 n - Floor[n/2])! / ((n -Floor[n/2] + 1)!^2 Floor[n/2]!), {n, 1, 30}] (* Vincenzo Librandi, Oct 01 2018 *)

Formula

f3 = floor((n+1)/2); f4 = floor(n/2);
a(n) = A060854(2,f3)*A060854(1,f4)*binomial(2*f3+1*f4,2*f3).
a(n) = (n - f + 1)*(2*n - f)! / ((n - f + 1)!^2 * f!) where f = floor(n/2). - Peter Luschny, Sep 30 2018