A215287 Number of permutations of 0..floor((n*3-1)/2) on even squares of an n X 3 array such that each row and column of even squares is increasing.
1, 3, 10, 30, 140, 420, 2310, 6930, 42042, 126126, 816816, 2450448, 16628040, 49884120, 350574510, 1051723530, 7595781050, 22787343150, 168212023980, 504636071940, 3792416540640, 11377249621920, 86787993910800, 260363981732400, 2011383287449200
Offset: 1
Keywords
Examples
Some solutions for n=5: 0 x 4 0 x 5 1 x 3 0 x 1 0 x 3 1 x 4 0 x 2 x 3 x x 1 x x 0 x x 4 x x 2 x x 0 x x 1 x 1 x 5 2 x 6 2 x 5 2 x 3 1 x 6 2 x 5 3 x 5 x 7 x x 3 x x 6 x x 6 x x 5 x x 6 x x 6 x 2 x 6 4 x 7 4 x 7 5 x 7 4 x 7 3 x 7 4 x 7
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Programs
-
Magma
[(n-(n div 2)+1)*Factorial(2*n-(n div 2)) / (Factorial(n-(n div 2) +1)^2*Factorial((n div 2))): n in [1..30]]; // Vincenzo Librandi, Oct 01 2018
-
Maple
T := (n, k) -> (n-k+1)*(2*n-k)!/((n-k+1)!^2*k!): a := n -> T(n, floor(n/2)): seq(a(n), n = 1..23); # Peter Luschny, Sep 30 2018
-
Mathematica
Table[(n - Floor[n/2] + 1) (2 n - Floor[n/2])! / ((n -Floor[n/2] + 1)!^2 Floor[n/2]!), {n, 1, 30}] (* Vincenzo Librandi, Oct 01 2018 *)
Formula
f3 = floor((n+1)/2); f4 = floor(n/2);
a(n) = (n - f + 1)*(2*n - f)! / ((n - f + 1)!^2 * f!) where f = floor(n/2). - Peter Luschny, Sep 30 2018
Comments