cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215288 Number of permutations of 0..floor((n*4-1)/2) on even squares of an n X 4 array such that each row and column of even squares is increasing.

Original entry on oeis.org

1, 6, 30, 280, 2100, 23100, 210210, 2522520, 25729704, 325909584, 3585005424, 47117214144, 546896235600, 7383099180600, 89212448432250, 1229149289511000, 15323394475903800, 214527522662653200, 2742051789669912720
Offset: 1

Views

Author

R. H. Hardin, Aug 07 2012

Keywords

Examples

			Some solutions for n=5
..2..x..4..x....0..x..3..x....2..x..3..x....0..x..5..x....1..x..4..x
..x..0..x..1....x..2..x..5....x..0..x..4....x..1..x..3....x..0..x..6
..3..x..7..x....1..x..6..x....5..x..6..x....6..x..7..x....2..x..5..x
..x..6..x..9....x..4..x..7....x..1..x..8....x..2..x..4....x..3..x..8
..5..x..8..x....8..x..9..x....7..x..9..x....8..x..9..x....7..x..9..x
		

Crossrefs

Column 4 of A215292.

Formula

f3=floor((n+1)/2),
f4=floor(n/2),
a(n) = A060854(2,f3)*A060854(2,f4)*binomial(2*f3+2*f4,2*f3).