cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A215297 T(n,k) = number of permutations of 0..floor((n*k-2)/2) on odd squares of an n X k array such that each row and column of odd squares is increasing.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 6, 6, 1, 1, 10, 30, 30, 10, 1, 1, 20, 70, 280, 70, 20, 1, 1, 35, 420, 2100, 2100, 420, 35, 1, 1, 70, 1050, 23100, 23100, 23100, 1050, 70, 1, 1, 126, 6930, 210210, 1051050, 1051050, 210210, 6930, 126, 1, 1, 252, 18018, 2522520, 14294280
Offset: 1

Views

Author

R. H. Hardin, Aug 07 2012

Keywords

Comments

Table starts
.1...1.....1........1...........1..............1.................1
.1...2.....3........6..........10.............20................35
.1...3.....6.......30..........70............420..............1050
.1...6....30......280........2100..........23100............210210
.1..10....70.....2100.......23100........1051050..........14294280
.1..20...420....23100.....1051050.......85765680........5703417720
.1..35..1050...210210....14294280.....5703417720......577185873264
.1..70..6930..2522520...814773960...577185873264...337653735859440
.1.126.18018.25729704.12547518984.48236247979920.43364386933948080
Even columns match A215292.
The first column is number of symmetric standard Young tableaux of shape (n), the second column is number of symmetric standard Young tableaux of shape (n,n) and the third column is number of symmetric standard Young tableaux of shape (n,n,n). - Ran Pan, May 21 2015

Examples

			Some solutions for n=5, k=4:
..x..0..x..4....x..0..x..1....x..1..x..3....x..0..x..6....x..0..x..1
..1..x..2..x....4..x..7..x....0..x..8..x....3..x..5..x....3..x..7..x
..x..3..x..8....x..2..x..3....x..2..x..5....x..1..x..7....x..2..x..5
..6..x..7..x....5..x..9..x....4..x..9..x....4..x..9..x....6..x..8..x
..x..5..x..9....x..6..x..8....x..6..x..7....x..2..x..8....x..4..x..9
		

Crossrefs

Column 2 is A001405. Column 4 is A215288. Column 6 is A215290.

Formula

f1=floor(k/2), f2=floor((k+1)/2), f3=floor((n+1)/2), f4=floor(n/2);
T(n,k) = A060854(f1,f3)*A060854(f2,f4)*binomial(f1*f3+f2*f4,f1*f3).

A342982 Triangle read by rows: T(n,k) is the number of tree-rooted planar maps with n edges and k+1 faces, n >= 0, k = 0..n.

Original entry on oeis.org

1, 1, 1, 2, 6, 2, 5, 30, 30, 5, 14, 140, 280, 140, 14, 42, 630, 2100, 2100, 630, 42, 132, 2772, 13860, 23100, 13860, 2772, 132, 429, 12012, 84084, 210210, 210210, 84084, 12012, 429, 1430, 51480, 480480, 1681680, 2522520, 1681680, 480480, 51480, 1430
Offset: 0

Views

Author

Andrew Howroyd, Apr 03 2021

Keywords

Comments

The number of vertices is n + 1 - k.
A tree-rooted planar map is a planar map with a distinguished spanning tree.

Examples

			Triangle begins:
    1;
    1,     1;
    2,     6,     2;
    5,    30,    30,      5;
   14,   140,   280,    140,     14;
   42,   630,  2100,   2100,    630,    42;
  132,  2772, 13860,  23100,  13860,  2772,   132;
  429, 12012, 84084, 210210, 210210, 84084, 12012, 429;
  ...
		

Crossrefs

Columns k=0..2 are A000108, A002457, 2*A002803.
Row sums are A005568.
Central coefficients are A342983.

Programs

  • Mathematica
    Table[(2 n)!/(k!*(k + 1)!*(n - k)!*(n - k + 1)!), {n, 0, 8}, {k, 0, n}] // Flatten (* Michael De Vlieger, Apr 06 2021 *)
  • PARI
    T(n,k) = {(2*n)!/(k!*(k+1)!*(n-k)!*(n-k+1)!)}
    { for(n=0, 10, print(vector(n+1, k, T(n,k-1)))) }

Formula

T(n,k) = (2*n)!/(k!*(k+1)!*(n-k)!*(n-k+1)!).
T(n,n-k) = T(n,k).
T(n, floor(n/2)) = A215288(n).
T(n,k) = A000108(n) * A001263(n+1,k+1). - Werner Schulte, Apr 04 2021

A342983 Number of tree-rooted planar maps with n+1 vertices and n+1 faces.

Original entry on oeis.org

1, 6, 280, 23100, 2522520, 325909584, 47117214144, 7383099180600, 1229149289511000, 214527522662653200, 38887279926227853120, 7271332144993605081120, 1395321310426879365566400, 273697641660657106322640000, 54708248601655917595233984000
Offset: 0

Views

Author

Andrew Howroyd, Apr 03 2021

Keywords

Comments

The number of edges is 2*n.
Also, a(n) is the number of discrete walks that start and stop at the origin, never pass below the x-axis nor to the left of the y-axis, and, in any order, have n steps that increment x, n steps that decrement x, n steps that increment y, and n steps that decrement y. It is in this sense a way to generalize the 2n-step one-dimensional walks counted by A000108 to a count in two dimensions. Proof: There are A001448(n) ways to interleave two length-2n Dyck words (A000108(n)^2) - Lee A. Newberg, Nov 17 2023

Crossrefs

Central coefficients of A342982.
Even bisection of A215288.

Programs

  • PARI
    a(n) = {(4*n)!/(n!*(n+1)!)^2}

Formula

a(n) = (4*n)!/(n!*(n+1)!)^2.
a(n) = A000108(n)^2 * A001448(n) = A001246(n) * A001448(n). - Alois P. Heinz, Aug 02 2023
Showing 1-3 of 3 results.