A215297 T(n,k) = number of permutations of 0..floor((n*k-2)/2) on odd squares of an n X k array such that each row and column of odd squares is increasing.
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 6, 6, 1, 1, 10, 30, 30, 10, 1, 1, 20, 70, 280, 70, 20, 1, 1, 35, 420, 2100, 2100, 420, 35, 1, 1, 70, 1050, 23100, 23100, 23100, 1050, 70, 1, 1, 126, 6930, 210210, 1051050, 1051050, 210210, 6930, 126, 1, 1, 252, 18018, 2522520, 14294280
Offset: 1
Examples
Some solutions for n=5, k=4: ..x..0..x..4....x..0..x..1....x..1..x..3....x..0..x..6....x..0..x..1 ..1..x..2..x....4..x..7..x....0..x..8..x....3..x..5..x....3..x..7..x ..x..3..x..8....x..2..x..3....x..2..x..5....x..1..x..7....x..2..x..5 ..6..x..7..x....5..x..9..x....4..x..9..x....4..x..9..x....6..x..8..x ..x..5..x..9....x..6..x..8....x..6..x..7....x..2..x..8....x..4..x..9
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1000
- Hodge, Jonathan K.; Krines, Mark; Lahr, Jennifer, Preseparable extensions of multidimensional preferences, Order 26, No. 2, 125-147 (2009), Table 1.
- Ran Pan, Exercise P, Problem 4, Project P.
Comments