cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A215297 T(n,k) = number of permutations of 0..floor((n*k-2)/2) on odd squares of an n X k array such that each row and column of odd squares is increasing.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 6, 6, 1, 1, 10, 30, 30, 10, 1, 1, 20, 70, 280, 70, 20, 1, 1, 35, 420, 2100, 2100, 420, 35, 1, 1, 70, 1050, 23100, 23100, 23100, 1050, 70, 1, 1, 126, 6930, 210210, 1051050, 1051050, 210210, 6930, 126, 1, 1, 252, 18018, 2522520, 14294280
Offset: 1

Views

Author

R. H. Hardin, Aug 07 2012

Keywords

Comments

Table starts
.1...1.....1........1...........1..............1.................1
.1...2.....3........6..........10.............20................35
.1...3.....6.......30..........70............420..............1050
.1...6....30......280........2100..........23100............210210
.1..10....70.....2100.......23100........1051050..........14294280
.1..20...420....23100.....1051050.......85765680........5703417720
.1..35..1050...210210....14294280.....5703417720......577185873264
.1..70..6930..2522520...814773960...577185873264...337653735859440
.1.126.18018.25729704.12547518984.48236247979920.43364386933948080
Even columns match A215292.
The first column is number of symmetric standard Young tableaux of shape (n), the second column is number of symmetric standard Young tableaux of shape (n,n) and the third column is number of symmetric standard Young tableaux of shape (n,n,n). - Ran Pan, May 21 2015

Examples

			Some solutions for n=5, k=4:
..x..0..x..4....x..0..x..1....x..1..x..3....x..0..x..6....x..0..x..1
..1..x..2..x....4..x..7..x....0..x..8..x....3..x..5..x....3..x..7..x
..x..3..x..8....x..2..x..3....x..2..x..5....x..1..x..7....x..2..x..5
..6..x..7..x....5..x..9..x....4..x..9..x....4..x..9..x....6..x..8..x
..x..5..x..9....x..6..x..8....x..6..x..7....x..2..x..8....x..4..x..9
		

Crossrefs

Column 2 is A001405. Column 4 is A215288. Column 6 is A215290.

Formula

f1=floor(k/2), f2=floor((k+1)/2), f3=floor((n+1)/2), f4=floor(n/2);
T(n,k) = A060854(f1,f3)*A060854(f2,f4)*binomial(f1*f3+f2*f4,f1*f3).
Showing 1-1 of 1 results.