cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A215336 Cyclically smooth Lyndon words with 4 colors.

Original entry on oeis.org

4, 3, 6, 11, 26, 52, 124, 275, 648, 1511, 3618, 8635, 20920, 50758, 124114, 304425, 750330, 1854716, 4600692, 11441298, 28528484, 71290791, 178529666, 447914775, 1125756830, 2833896220, 7144466184, 18036398490, 45591671450, 115381759707, 292329164908, 741410952975, 1882219946418, 4782782372655, 12163730636096
Offset: 1

Views

Author

Joerg Arndt, Aug 13 2012

Keywords

Comments

We call a Lyndon word (x[1],x[2],...,x[n]) smooth if abs(x[k]-x[k-1]) <= 1 for 2<=k<=n, and cyclically smooth if abs(x[1]-x[n]) <= 1.

Examples

			The cyclically smooth necklaces (N) and Lyndon words (L) of length 4 with 4 colors (using symbols ".", "1", "2", and "3") are:
    ....   1       .  N
    ...1   4    ...1  N L
    ..11   4    ..11  N L
    .1.1   2      .1  N
    .111   4    .111  N L
    .121   4    .121  N L
    1111   1       1  N
    1112   4    1112  N L
    1122   4    1122  N L
    1212   2      12  N
    1222   4    1222  N L
    1232   4    1232  N L
    2222   1       2  N
    2223   4    2223  N L
    2233   4    2233  N L
    2323   2      23  N
    2333   4    2333  N L
    3333   1       3  N
There are 18 necklaces (so A208773(4)=24) and a(4)=11 Lyndon words.
		

Crossrefs

Cf. A208773 (cyclically smooth necklaces, 4 colors).
Cf. A215329 (smooth necklaces, 4 colors), A215330 (smooth Lyndon words, 4 colors).

Programs

  • Mathematica
    terms = 40;
    sn[n_, k_] := 1/n Sum[EulerPhi[j] (1+2Cos[i Pi/(k+1)])^(n/j), {i, 1, k}, {j, Divisors[n]}];
    vn = Table[Round[sn[n, 4]], {n, terms}];
    vl = Table[Sum[MoebiusMu[n/d] vn[[d]], {d, Divisors[n]}], {n, terms}] (* Jean-François Alcover, Jul 22 2018, after Joerg Arndt *)
  • PARI
    default(realprecision,99); /* using floats */
    sn(n,k)=1/n*sum(i=1,k,sumdiv(n,j,eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j)));
    vn=vector(66,n, round(sn(n,4)) ); /* necklaces */
    /* Lyndon words, via Moebius inversion: */
    vl=vector(#vn,n, sumdiv(n,d, moebius(n/d)*vn[d]))

Formula

a(n) = sum_{ d divides n } moebius(n/d) * A208773(d).

A215330 Smooth Lyndon words with 4 colors.

Original entry on oeis.org

1, 4, 3, 8, 18, 47, 108, 268, 638, 1553, 3761, 9189, 22453, 55185, 135894, 335906, 832312, 2068066, 5149845, 12852750, 32138353, 80509495, 202013368, 507669048, 1277586867, 3219366610, 8122275225
Offset: 0

Views

Author

Joerg Arndt, Aug 08 2012

Keywords

Comments

We call a Lyndon word (x[1],x[2],...,x[n]) smooth if abs(x[k]-x[k-1]) <= 1 for 2<=k<=n.

Examples

			(See A215329).
		

Crossrefs

Cf. A215329 (smooth necklaces, 4 colors), A215328 (smooth Lyndon words, 3 colors).

Extensions

More terms from Joerg Arndt, Jun 17 2019
Showing 1-2 of 2 results.