A215337 Cyclically smooth Lyndon words with 5 colors.
5, 4, 8, 15, 36, 74, 180, 411, 996, 2400, 5940, 14707, 36972, 93276, 237264, 606030, 1556028, 4009118, 10367892, 26888925, 69930264, 182296212, 476262756, 1246695079, 3269321352, 8587452204, 22590645408, 59510993607, 156973954860, 414552239458, 1096017973380, 2900753084400, 7684758670248, 20377460964156, 54081265456116
Offset: 1
Keywords
Examples
The cyclically smooth necklaces (N) and Lyndon words (L) of length 4 with 5 colors (using symbols ".", "1", "2", "3", and "4") are: .... 1 . N ...1 4 ...1 N L ..11 4 ..11 N L .1.1 2 .1 N .111 4 .111 N L .121 4 .121 N L 1111 1 1 N 1112 4 1112 N L 1122 4 1122 N L 1212 2 12 N 1222 4 1222 N L 1232 4 1232 N L 2222 1 2 N 2223 4 2223 N L 2233 4 2233 N L 2323 2 23 N 2333 4 2333 N L 2343 4 2343 N L 3333 1 3 N 3334 4 3334 N L 3344 4 3344 N L 3434 2 34 N 3444 4 3444 N L 4444 1 4 N There are 24 necklaces (so A208774(4)=24) and a(4)=15 Lyndon words.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551v1 [math.CO], 2008.
Programs
-
Mathematica
terms = 40; sn[n_, k_] := 1/n Sum[EulerPhi[j] (1+2Cos[i Pi/(k+1)])^(n/j), {i, 1, k}, {j, Divisors[n]}]; vn = Table[Round[sn[n, 5]], {n, terms}]; vl = Table[Sum[MoebiusMu[n/d] vn[[d]], {d, Divisors[n]}], {n, terms}] (* Jean-François Alcover, Jul 22 2018, after Joerg Arndt *)
-
PARI
default(realprecision,99); /* using floats */ sn(n,k)=1/n*sum(i=1,k,sumdiv(n,j,eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j))); vn=vector(66,n, round(sn(n,5)) ); /* necklaces */ /* Lyndon words, via Moebius inversion: */ vl=vector(#vn,n, sumdiv(n,d, moebius(n/d)*vn[d]))
Formula
a(n) = sum_{ d divides n } moebius(n/d) * A208774(d).
Comments