cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215338 Cyclically smooth Lyndon words with 7 colors.

Original entry on oeis.org

7, 6, 12, 23, 56, 118, 292, 683, 1692, 4180, 10604, 26978, 69720, 181162, 475072, 1252756, 3324096, 8861054, 23729740, 63786792, 172066648, 465566598, 1263208676, 3435891568, 9366558088, 25585826404, 70019830220, 191943097314, 526978629656, 1448862393216, 3988658225028, 10993822451304, 30335737458872, 83793421017568
Offset: 1

Views

Author

Joerg Arndt, Aug 13 2012

Keywords

Comments

We call a Lyndon word (x[1],x[2],...,x[n]) smooth if abs(x[k]-x[k-1]) <= 1 for 2<=k<=n, and cyclically smooth if abs(x[1]-x[n]) <= 1.

Examples

			The cyclically smooth necklaces (N) and Lyndon words (L) of length 4 with 7 colors (using symbols ".", "1", "2", "3", "4", "5", and "6") are:
    ....   1       .  N
    ...1   4    ...1  N L
    ..11   4    ..11  N L
    .1.1   2      .1  N
    .111   4    .111  N L
    .121   4    .121  N L
    1111   1       1  N
    1112   4    1112  N L
    1122   4    1122  N L
    1212   2      12  N
    1222   4    1222  N L
    1232   4    1232  N L
    2222   1       2  N
    2223   4    2223  N L
    2233   4    2233  N L
    2323   2      23  N
    2333   4    2333  N L
    2343   4    2343  N L
    3333   1       3  N
    3334   4    3334  N L
    3344   4    3344  N L
    3434   2      34  N
    3444   4    3444  N L
    3454   4    3454  N L
    4444   1       4  N
    4445   4    4445  N L
    4455   4    4455  N L
    4545   2      45  N
    4555   4    4555  N L
    4565   4    4565  N L
    5555   1       5  N
    5556   4    5556  N L
    5566   4    5566  N L
    5656   2      56  N
    5666   4    5666  N L
    6666   1       6  N
There are 36 necklaces (so A208776(4)=36) and a(4)=23 Lyndon words.
		

Crossrefs

Cf. A208776 (cyclically smooth necklaces, 7 colors).
Cf. A215333 (smooth necklaces, 7 colors), A215334 (smooth Lyndon words, 7 colors).

Programs

  • Mathematica
    terms = 40;
    sn[n_, k_] := 1/n Sum[EulerPhi[j] (1+2Cos[i Pi/(k+1)])^(n/j), {i, 1, k}, {j, Divisors[n]}];
    vn = Table[Round[sn[n, 7]], {n, terms}];
    vl = Table[Sum[MoebiusMu[n/d] vn[[d]], {d, Divisors[n]}], {n, terms}] (* Jean-François Alcover, Jul 22 2018, after Joerg Arndt *)
  • PARI
    default(realprecision,99); /* using floats */
    sn(n,k)=1/n*sum(i=1,k,sumdiv(n,j,eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j)));
    vn=vector(66,n, round(sn(n,7)) ); /* necklaces */
    /* Lyndon words, via Moebius inversion: */
    vl=vector(#vn,n, sumdiv(n,d, moebius(n/d)*vn[d]))

Formula

a(n) = sum_{ d divides n } moebius(n/d) * A208776(d).