A215409 The Goodstein sequence G_n(3).
3, 3, 3, 2, 1, 0
Offset: 0
Examples
a(0) = 3 = 2^1 + 1; a(1) = 3^1 + 1 - 1 = 3^1 = 3; a(2) = 4^1 - 1 = 3; a(3) = 3 - 1 = 2; a(4) = 2 - 1 = 1; a(5) = 1 - 1 = 0.
Links
- R. L. Goodstein, On the Restricted Ordinal Theorem, J. Symb. Logic 9, 33-41, 1944.
- Eric Weisstein's World of Mathematics, Hereditary Representation
- Eric Weisstein's World of Mathematics, Goodstein Sequence
- Eric Weisstein's World of Mathematics, Goodstein's Theorem
- Wikipedia, Hereditary base-n notation
- Wikipedia, Goodstein sequence
- Wikipedia, Goodstein's Theorem
- Reinhard Zumkeller, Haskell programs for Goodstein sequences
Crossrefs
Programs
-
Haskell
-- See Link
-
Mathematica
PadRight[CoefficientList[Series[3 + 3 x + 3 x^2 + 2 x^3 + x^4, {x, 0, 4}], x], 6] (* Michael De Vlieger, Dec 12 2017 *)
-
PARI
B(n, b)=sum(i=1, #n=digits(n, b), n[i]*(b+1)^if(#nIain Fox, Dec 13 2017
-
PARI
first(n) = my(res = vector(n)); res[1] = res[2] = res[3] = 3; res[4] = 2; res[5] = 1; res; \\ Iain Fox, Dec 12 2017
-
PARI
first(n) = Vec(3 + 3*x + 3*x^2 + 2*x^3 + x^4 + O(x^n)) \\ Iain Fox, Dec 12 2017
-
PARI
a(n) = floor(2 - (4/Pi)*atan(n-3)) \\ Iain Fox, Dec 12 2017
Formula
a(0) = a(1) = a(2) = 3; a(3) = 2; a(4) = 1; a(n) = 0, n > 4;
From Iain Fox, Dec 12 2017: (Start)
G.f.: 3 + 3*x + 3*x^2 + 2*x^3 + x^4.
E.g.f.: 3 + 3*x + (3/2)*x^2 + (1/3)*x^3 + (1/24)*x^4.
a(n) = floor(2 - (4/Pi)*arctan(n-3)), n >= 0.
(End)
Extensions
Corrected by Natan Arie Consigli, Jan 23 2015
Comments