A215417 Primes that remain prime when a single zero digit is inserted between any two adjacent digits.
11, 13, 17, 19, 37, 41, 53, 59, 61, 67, 71, 79, 89, 97, 109, 113, 131, 149, 191, 197, 227, 239, 269, 281, 283, 337, 367, 379, 383, 401, 421, 449, 457, 499, 503, 509, 587, 607, 673, 701, 719, 727, 739, 757, 809, 811, 887, 907, 929, 991, 1009, 1061, 1093, 1103
Offset: 1
Examples
399617 is prime and also 3996107, 3996017, 3990617, 3909617, 3099617.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..4300 (terms a(1)-a(372) from Paolo P. Lava, terms a(373)-a(700) from Vincenzo Librandi)
Programs
-
Maple
A215417:=proc(q) local a,b,c,i,n,ok; for n from 5 to q do a:=ithprime(n); b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=ithprime(n);ok:=1; for i from 1 to b-1 do c:=a+9*10^i*trunc(a/10^i); if not isprime(c) then ok:=0; break; fi; od; if ok=1 then print(ithprime(n)); fi; od; end: A215417(1000);
-
Mathematica
Select[Prime[Range[5,200]],And@@PrimeQ[Table[FromDigits[Insert[ IntegerDigits[ #],0,n]],{n,2,IntegerLength[#]}]]&] (* Harvey P. Dale, Feb 23 2014 *)
-
PARI
is(n)=my(v=concat([""], digits(n))); for(i=2, #v-1, v[1]=Str(v[1], v[i]); v[i]=0; if(i>2, v[i-1]=""); if(!isprime(eval(concat(v))), return(0))); isprime(n) \\ Charles R Greathouse IV, Sep 26 2012