cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215421 Primes that remain prime when a single digit 9 is inserted between any two consecutive digits or as the leading or trailing digit.

Original entry on oeis.org

7, 19, 37, 41, 199, 239, 311, 587, 661, 941, 967, 1009, 1997, 4993, 4999, 5393, 5651, 6911, 9109, 9397, 9679, 9829, 19417, 20233, 22549, 27397, 29389, 31387, 39989, 71419, 71569, 90599, 91951, 95369, 97103, 98909, 99023, 160009, 225919, 267389, 313991, 328849
Offset: 1

Views

Author

Paolo P. Lava, Aug 10 2012

Keywords

Examples

			31387 is prime and also 313879, 313897, 313987, 319387, 391387, 931387.
		

Crossrefs

Programs

  • Maple
    A215421:=proc(q,x)
    local a,b,c,d,i,n,ok;
    for n from 1 to q do
      a:=ithprime(n); b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od;
      a:=ithprime(n); ok:=1;
      for i from 0 to b do
        c:=a+9*10^i*trunc(a/10^i)+10^i*x; if not isprime(c) then ok:=0; break; fi;
      od;
      if ok=1 then print(ithprime(n)); fi;
    od; end:
    A215421(1000,9);
  • Mathematica
    Select[Prime[Range[30000]],AllTrue[FromDigits/@Table[Insert[ IntegerDigits[ #],9,n],{n, IntegerLength[ #]+1}],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 22 2016 *)