A215453 a(n) = least k>0 such that n^n divides Fibonacci(k).
1, 6, 36, 192, 3125, 3888, 941192, 12582912, 516560652, 7500000000, 259374246010, 743008370688, 163086595857367, 1190572159881216, 583858520507812500, 13835058055282163712, 437950726881001816329, 3278867339608044797952, 1874292305362402347591138, 78643200000000000000000000, 2225747435575612389097571208
Offset: 1
Keywords
Examples
a(2): least k>0 such that 2^2 divides Fibonacci(k) is k=6: Fibonacci(6)=8. So a(2)=6.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Python
TOP = 9 prpr = 0 prev = k = y = 1 res = [-1]*TOP ii = [0]*TOP for i in range(1, TOP): ii[i] = i**i while y
Formula
a(n) = A001177(n^n)
Extensions
a(9) from Giovanni Resta, Jul 20 2013
Terms a(10) onward from Max Alekseyev, Jan 30 2014