cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215501 Inverse of permutation in A215366.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 13, 11, 20, 14, 15, 12, 31, 16, 46, 17, 21, 22, 68, 18, 23, 32, 24, 25, 98, 26, 140, 19, 33, 47, 34, 27, 196, 69, 48, 28, 273, 35, 374, 36, 37, 99, 509, 29, 49, 38, 70, 50, 685, 39, 51, 40, 100, 141, 916, 41, 1213, 197, 52, 30
Offset: 1

Views

Author

Alois P. Heinz, Aug 13 2012

Keywords

Comments

Permutation of the natural numbers A000027 with fixed points 1-6, 9, 10, 14, 15, 21, 22, 33, 49, 1095199, ... and inverse permutation A215366 (with offset 1).

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0 or i<2, [2^n], [seq(
          map(p->p*ithprime(i)^j, g(n-i*j, i-1))[], j=0..n/i)]) end:
    b:= proc() local l, i; l:=[]; i:=0;
          proc(n) while nops(l)
    				
  • Mathematica
    g[n_, i_] := g[n, i] = If[n == 0 || i < 2, {2^n}, Flatten[ Table[ #*Prime[i]^j& /@ g[n - i*j, i - 1], {j, 0, n/i}]]];
    b[n_] := Module[{l, i}, l = {}; i = 0; While[Length[l] < n, l = Join[l, Sort[g[i, i]]]; i++]; l[[n]]];
    a[n_] := Module[{t, a}, t = 0; a[_] = -1; Module[{h}, While[a[n] == -1, t++; h = b[t]; If[a[h] == -1, a[h] = t]]]; a[n]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 14 2023, after Alois P. Heinz *)

Formula

a(n) = A000070(A056239(n)-1)+1 for n in A000040.
a(n) = A000070(A056239(n)) for n in A000079.
A000070(A056239(n)-1) < a(n) <= A000070(A056239(n)).