A215537 Lowest k such that k is representable as both the sum of n and of n+1 nonzero squares.
25, 17, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
Offset: 1
Keywords
Examples
25 = 5^2 = 3^2 + 4^2 17 = 4^2 + 1^2 = 3^2 + 2^2 + 2^2 12 = 2^2 + 2^2 + 2^2 = 3^2 + 1^2 + 1^2 + 1^2 after this just add 1^2 to both sides.
Crossrefs
Programs
-
Maple
# true if a is representable as a sum of n squares, each square >= m^2. isRepnSqrsMin := proc(a,n,m) local mpr ; if a < n*m^2 then return false; end if; if n = 1 then if a>= m^2 and issqr(a) then true; else false; end if; else for mpr from m to a do if a-mpr^2 < 1 then return false; elif procname(a-mpr^2,n-1,mpr) then return true; end if; end do: end if; end proc: # true if a is representable as a sum of n positive squares. isRepnSqrs := proc(a,n) isRepnSqrsMin(a,n,1) ; end proc: A215537 := proc(n) local k; for k from 1 do if isRepnSqrs(k,n) and isRepnSqrs(k,n+1) then return k; end if; end do: end proc: # R. J. Mathar, Sep 11 2012