cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215561 Number A(n,k) of permutations of k indistinguishable copies of 1..n with every partial sum <= the same partial sum averaged over all permutations; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 5, 30, 7, 1, 1, 1, 14, 420, 403, 35, 1, 1, 1, 42, 6930, 40350, 18720, 139, 1, 1, 1, 132, 126126, 5223915, 19369350, 746192, 1001, 1, 1, 1, 429, 2450448, 783353872, 27032968200, 9212531290, 71892912, 5701, 1
Offset: 0

Views

Author

Alois P. Heinz, Aug 16 2012

Keywords

Comments

"Late-growing permutations" were first defined by R. H. Hardin in A147681 and 18 related sequences. David Scambler observed that the set of orthogonal sequences includes A000108 and A007004, and he asked for the other orthogonal sequences, see link below.
"Early-growing permutations" with every partial sum >= the same partial sum averaged over all permutations define the same sequences.
Conjecture: Row r > 1 is asymptotic to c(r) * r^(r*n) / (Pi^((r-1)/2) * n^((r+1)/2)), where c(r) are a constants. - Vaclav Kotesovec, Sep 07 2016

Examples

			A(2,2) = 2: (1,1,2,2), (1,2,1,2).
A(2,3) = 5: (1,1,1,2,2,2), (1,1,2,1,2,2), (1,1,2,2,1,2), (1,2,1,1,2,2), (1,2,1,2,1,2).
A(3,1) = 3: (1,2,3), (1,3,2), (2,1,3).
a(4,1) = 7: (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,4,2,3), (2,1,3,4), (2,1,4,3), (2,3,1,4).
Square array A(n,k) begins:
  1,   1,     1,        1,           1,              1, ...
  1,   1,     1,        1,           1,              1, ...
  1,   1,     2,        5,          14,             42, ...
  1,   3,    30,      420,        6930,         126126, ...
  1,   7,   403,    40350,     5223915,      783353872, ...
  1,  35, 18720, 19369350, 27032968200, 44776592395920, ...
		

Crossrefs

Programs

  • Maple
    b:= proc(l) option remember; local m, n, g;
          m, n:= nops(l), add(i, i=l);
          g:= add(i*l[i], i=1..m)-(m+1)/2*(n-1);
         `if`(n<2, 1, add(`if`(l[i]>0 and i<=g,
            b(subsop(i=l[i]-1, l)), 0), i=1..m))
        end:
    A:= (n, k)-> b([k$n]):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[l_] := b[l] = Module[{m, n, g}, {m, n} = {Length[l], Total[l]}; g = Sum[i*l[[i]], {i, 1, m}] - (m+1)/2*(n-1); If[n < 2, 1, Sum[If[l[[i]] > 0 && i <= g, b[ReplacePart[l, i -> l[[i]] - 1]], 0], {i, 1, m}]]]; a[n_, k_] := b[Array[k&, n]]; Table [Table [a[n, d-n], {n, 0, d}], {d, 0, 9}] // Flatten (* Jean-François Alcover, Dec 06 2013, translated from Maple *)