A215561 Number A(n,k) of permutations of k indistinguishable copies of 1..n with every partial sum <= the same partial sum averaged over all permutations; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 5, 30, 7, 1, 1, 1, 14, 420, 403, 35, 1, 1, 1, 42, 6930, 40350, 18720, 139, 1, 1, 1, 132, 126126, 5223915, 19369350, 746192, 1001, 1, 1, 1, 429, 2450448, 783353872, 27032968200, 9212531290, 71892912, 5701, 1
Offset: 0
Examples
A(2,2) = 2: (1,1,2,2), (1,2,1,2). A(2,3) = 5: (1,1,1,2,2,2), (1,1,2,1,2,2), (1,1,2,2,1,2), (1,2,1,1,2,2), (1,2,1,2,1,2). A(3,1) = 3: (1,2,3), (1,3,2), (2,1,3). a(4,1) = 7: (1,2,3,4), (1,2,4,3), (1,3,2,4), (1,4,2,3), (2,1,3,4), (2,1,4,3), (2,3,1,4). Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 5, 14, 42, ... 1, 3, 30, 420, 6930, 126126, ... 1, 7, 403, 40350, 5223915, 783353872, ... 1, 35, 18720, 19369350, 27032968200, 44776592395920, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..14, flattened
- David Scambler et al., A147681 Late-growing permutations and follow-up messages on the SeqFan list, Aug 10 2012
Crossrefs
Programs
-
Maple
b:= proc(l) option remember; local m, n, g; m, n:= nops(l), add(i, i=l); g:= add(i*l[i], i=1..m)-(m+1)/2*(n-1); `if`(n<2, 1, add(`if`(l[i]>0 and i<=g, b(subsop(i=l[i]-1, l)), 0), i=1..m)) end: A:= (n, k)-> b([k$n]): seq(seq(A(n, d-n), n=0..d), d=0..10);
-
Mathematica
b[l_] := b[l] = Module[{m, n, g}, {m, n} = {Length[l], Total[l]}; g = Sum[i*l[[i]], {i, 1, m}] - (m+1)/2*(n-1); If[n < 2, 1, Sum[If[l[[i]] > 0 && i <= g, b[ReplacePart[l, i -> l[[i]] - 1]], 0], {i, 1, m}]]]; a[n_, k_] := b[Array[k&, n]]; Table [Table [a[n, d-n], {n, 0, d}], {d, 0, 9}] // Flatten (* Jean-François Alcover, Dec 06 2013, translated from Maple *)
Comments