cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215602 a(n) = L(n)*L(n+1), where L = A000032 (Lucas numbers).

Original entry on oeis.org

2, 3, 12, 28, 77, 198, 522, 1363, 3572, 9348, 24477, 64078, 167762, 439203, 1149852, 3010348, 7881197, 20633238, 54018522, 141422323, 370248452, 969323028, 2537720637, 6643838878, 17393796002, 45537549123, 119218851372, 312119004988, 817138163597, 2139295485798, 5600748293802, 14662949395603, 38388099893012, 100501350283428
Offset: 0

Views

Author

N. J. A. Sloane, Aug 17 2012

Keywords

Crossrefs

Cf. A000032, A215580. A075269 is a signed version.

Programs

  • Mathematica
    Table[LucasL[n]*LucasL[n + 1], {n, 0, 33}] (* Amiram Eldar, Oct 06 2020 *)
  • PARI
    a(n) = round(((-1)^n+(2^(-1-n)*((3-sqrt(5))^n*(-5+sqrt(5))+(3+sqrt(5))^n*(5+sqrt(5))))/sqrt(5))) \\ Colin Barker, Oct 01 2016
    
  • PARI
    Vec((2-x+2*x^2)/((1+x)*(x^2-3*x+1)) + O(x^30)) \\ Colin Barker, Oct 01 2016

Formula

G.f.: ( 2-x+2*x^2 ) / ( (1+x)*(x^2-3*x+1) ). - R. J. Mathar, Aug 21 2012
a(n) = A002878(n)+(-1)^n. - R. J. Mathar, Aug 21 2012
a(n) = F(n-1)*F(n) + F(n-1)*F(n+2) + F(n+1)*F(n) + F(n+1)*F(n+2), where F=A000045, F(-1)=1. - Bruno Berselli, Nov 03 2015
a(n) = F(2*n) + F(2*n+2) + (-1)^n with F(k)=A000045(k). - J. M. Bergot, Apr 15 2016
a(n) = ((-1)^n+(2^(-1-n)*((3-sqrt(5))^n*(-5+sqrt(5))+(3+sqrt(5))^n*(5+sqrt(5)))) / sqrt(5)). - Colin Barker, Oct 01 2016
Sum_{n>=0} (-1)^n/a(n) = sqrt(5)/10. - Amiram Eldar, Oct 06 2020