A215615 From Wendt's determinant compute sqrt(abs(A048954(n))/(2^n - 1)).
1, 1, 2, 5, 11, 0, 232, 2295, 26714, 453871, 7053157, 0, 7715707299, 545539395584, 42297694603648, 4883188189089105, 531361846217471443, 0, 28649272821614715410221, 14214363393075742724609375, 7526219790642312236217153392, 5968603205606800870499639536231
Offset: 1
Keywords
References
- P. Ribenboim, Fermat's Last Theorem for Amateurs, Springer-Verlag, NY, 1999, pp. 126, 136.
Programs
-
Mathematica
w[n_] := Resultant[x^n - 1, (1 + x)^n - 1, x]; Table[ Sqrt[Abs[w[n]]/(2^n - 1)], {n, 25}]
Formula
a(n) = ((-1)^(n-1)*A048954(n)/(2^n - 1))^(1/2).
Comments