cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215615 From Wendt's determinant compute sqrt(abs(A048954(n))/(2^n - 1)).

Original entry on oeis.org

1, 1, 2, 5, 11, 0, 232, 2295, 26714, 453871, 7053157, 0, 7715707299, 545539395584, 42297694603648, 4883188189089105, 531361846217471443, 0, 28649272821614715410221, 14214363393075742724609375, 7526219790642312236217153392, 5968603205606800870499639536231
Offset: 1

Views

Author

Jonathan Sondow, Aug 17 2012

Keywords

Comments

E. Lehmer claimed, and J. S. Frame proved, that a(n) is an integer (Ribenboim 1999, p. 128).
The subsequence for even n is A129205.
See A048954 for additional comments, references, links, and cross-references.

References

  • P. Ribenboim, Fermat's Last Theorem for Amateurs, Springer-Verlag, NY, 1999, pp. 126, 136.

Crossrefs

Programs

  • Mathematica
    w[n_] := Resultant[x^n - 1, (1 + x)^n - 1, x]; Table[ Sqrt[Abs[w[n]]/(2^n - 1)], {n, 25}]

Formula

a(n) = ((-1)^(n-1)*A048954(n)/(2^n - 1))^(1/2).