cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A215368 E.g.f.: Series_Reversion( x*cos(x) - x*sin(x) ).

Original entry on oeis.org

1, 2, 15, 176, 2905, 61536, 1592703, 48706048, 1718376561, 68702272000, 3069734553743, 151592011714560, 8198710703202825, 481965222651551744, 30598546651134134655, 2086474763912627879936, 152083996930329322871521, 11800530001358902191587328, 971113004536128839898536079
Offset: 1

Views

Author

Paul D. Hanna, Aug 08 2012

Keywords

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 15*x^3/3! + 176*x^4/4! + 2905*x^5/5! +...
where A(x*cos(x) - x*sin(x)) = x and A(x) = x/(cos(A(x)) - sin(A(x))).
Related expansions:
cos(A(x)) = 1 - x^2/2! - 6*x^3/3! - 71*x^4/4! - 1160*x^5/5! - 24481*x^6/6! - 631904*x^7/7! - 19288079*x^8/8! -...
sin(A(x)) = x + 2*x^2/2! + 14*x^3/3! + 164*x^4/4! + 2696*x^5/5! + 57006*x^6/6! + 1473632*x^7/7! + 45026344*x^8/8! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(X=x+x^2*O(x^n));n!*polcoeff(serreverse(x*cos(X)-x*sin(X)),n)}
    
  • PARI
    {a(n)=local(X=x+x^2*O(x^n));n!*polcoeff(x/(cos(X)-sin(X))^n/n,n)}
    for(n=1,31,print1(a(n),", "))

Formula

E.g.f. satisfies: A(x) = x / (cos(A(x)) - sin(A(x))).
a(n) = [x^n/n!] 1/(cos(x)-sin(x))^n / n.
a(n) = n*A201923(n-1).
a(n) ~ sqrt(-1 + 4/(3 + sin(2*s))) * n^(n-1) / (r^n * exp(n)), where s = 0.4026281741881116098199325239112307245635064777960... is the root of the equation s*cos(2*s) + sin(2*s) = 1 and r = s*(cos(s) - sin(s)) = 0.21266685344074710045360679397024815598865409988038310855608986167... - Vaclav Kotesovec, Oct 04 2020

A215639 E.g.f. satisfies: A(x) = cos(x*A(x)) + sin(x*A(x)).

Original entry on oeis.org

1, 1, 1, -4, -51, -304, 125, 34880, 557753, 3416320, -74779911, -2917151744, -46015368443, 115191402496, 30429734385973, 942941062774784, 9925460231059185, -471696770041053184, -29508689065235461903, -733077456673636089856, 4714209123766494329021
Offset: 0

Views

Author

Paul D. Hanna, Aug 18 2012

Keywords

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! - 4*x^3/3! - 51*x^4/4! - 304*x^5/5! + 125*x^6/6! +...
where A(x) = cos(x*A(x)) + sin(x*A(x)).
Related expansions:
cos(x*A(x)) = 1 - x^2/2! - 6*x^3/3! - 23*x^4/4! + 40*x^5/5! + 2159*x^6/6! + 26656*x^7/7! + 114577*x^8/8! +...
sin(x*A(x)) = x + 2*x^2/2! + 2*x^3/3! - 28*x^4/4! - 344*x^5/5! - 2034*x^6/6! + 8224*x^7/7! + 443176*x^8/8! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(X=x+x^2*O(x^n)); n!*polcoeff(1/x*serreverse(x/(cos(X)+sin(X))), n)}
    
  • PARI
    {a(n)=local(X=x+x^2*O(x^n)); n!*polcoeff((cos(X)+sin(X))^(n+1)/(n+1), n)}
    
  • PARI
    {a(n)=local(A=1+x+x^2*O(x^n)); for(i=1,n,A=cos(x*A)+sin(x*A));n!*polcoeff(A, n)}
    for(n=0, 31, print1(a(n), ", "))

Formula

E.g.f.: A(x) = (1/x)*Series_Reversion( x/(cos(x) + sin(x)) ).
E.g.f. satisfies: A(x/(cos(x) + sin(x))) = cos(x) + sin(x).
a(n) = [x^n/n!] (cos(x)+sin(x))^(n+1) / (n+1).
a(n) = A215638(n+1)/(n+1) for n>=0.
Showing 1-2 of 2 results.