cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215645 Depth for {+1,-1} maximal determinant matrices: minimal depth for which a proper submatrix is also a maximal determinant matrix.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 1, 2, 3, 5, 6, 7, 8, 8, 1, 7, 10, 10, 10
Offset: 1

Views

Author

Keywords

Comments

The complementary depth m(A) of a maximal determinant {+1,-1} matrix of order n is the maximum m < n such that a maximal determinant matrix of order m occurs as a proper submatrix of A, or 0 if n = 1. The depth d(A) of A is d(A) := n - m(A). The depth d(n) is the minimum of d(A) over all maximal determinant matrices A of order n.
We calculated the first 21 terms of the sequence by an exhaustive computation of minors of known maximal determinant matrices as of August 2012.

Examples

			For n = 11 the depth is 3 because there is a maximal determinant matrix of order 11 that has a maximal determinant submatrix of order 8 = 11-3, but no larger proper maximal determinant submatrices. Note that only one of the three Hadamard equivalence classes of maximal determinant matrices of order 11 gives depth 3; the others give depth 4, but we take the minimum.
		

Crossrefs