A215663 Floor(R(10^n)) - pi(10^n), where pi(x) is the number of primes <= x, R(x) = Sum_{ k>=1 } ((mu(k)/k) * li(x^(1/k))) and li(x) is the Cauchy principal value of the integral from 0 to x of dt/log(t).
0, 0, 0, -3, -5, 29, 88, 96, -79, -1828, -2319, -1476, -5774, -19201, 73217, 327052, -598255, -3501366, 23884333, -4891825, -86432205, -127132665, 1033299853, -1658989720, -1834784715, -17149335456, -17535487935, -174760519828
Offset: 1
Keywords
References
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus, an imprint of Springer-Verlag, NY, 1996, page 146.
Links
- Michel Planat and Patrick Solé, Improving Riemann prime counting, arXiv:1410.1083 [math.NT], 2014.
Programs
-
Mathematica
R[x_] := Sum[N[LogIntegral[x^(1/k)]*MoebiusMu[k]/k, 36], {k, 1, 1000}]; a[n_] := Floor[R[10^n]-PrimePi[10^n]] a[n_] := Floor[RiemannR[10^n] - PrimePi[10^n]] (* Eduard Roure Perdices, Apr 16 2021 *)
Extensions
a(17) corrected, a(25)-a(28) obtained using A006880. - Eduard Roure Perdices, Apr 16 2021
Comments