A215665 a(n) = 3*a(n-2) - a(n-3), with a(0)=0, a(1)=a(2)=-3.
0, -3, -3, -9, -6, -24, -9, -66, -3, -189, 57, -564, 360, -1749, 1644, -5607, 6681, -18465, 25650, -62076, 95415, -211878, 348321, -731049, 1256841, -2541468, 4501572, -8881245, 16046184, -31145307, 57019797, -109482105, 202204698, -385466112, 716096199
Offset: 0
Examples
We have a(1)=a(2)=a(8)=-3, a(3)=a(6)=-9, a(4)+a(11)=-10*a(10), and 47*a(5)=2*a(11).
References
- R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math., (in press, 2012).
- D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the nine order, (submitted, 2012).
Links
- Index entries for linear recurrences with constant coefficients, signature (0,3,-1).
Programs
-
Mathematica
LinearRecurrence[{0,3,-1}, {0,-3,-3}, 50]
-
PARI
concat(0,Vec(-3*(1+x)/(1-3*x^2+x^3)+O(x^99))) \\ Charles R Greathouse IV, Oct 01 2012
Formula
a(n) = c(1)*c(2)^n + c(2)*c(4)^n + c(4)*c(1)^n, where c(j) := 2*cos(2*Pi*j/9).
G.f.: -3*x*(1+x)/(1-3*x^2+x^3).
Comments