cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A292846 Numbers k such that 11 iterations of 'Reverse and Subtract' lead to k, whereas fewer than 11 iterations do not lead to k.

Original entry on oeis.org

166425621223026859056339052269787863565428, 192910929628537040766341860254183960991698, 307567270506730945853551459962385036145286, 311906350108036145286307567270199935391877
Offset: 1

Views

Author

Meritxell Vila Miñana, Sep 24 2017

Keywords

Comments

There are 11 forty-two-digit terms in the sequence. Further terms are obtained (a) by inserting at the center of these terms either any number of 0's (for 166425621223026859056339052269787863565428, 311906350108036145286307567270199935391877, 466287189883036620417374974360601118217236, 658139747564935391877311906350534262959233, 703288139752915027377325180481642968027593) or any number of 9's (for the other six terms) and (b) by concatenating a term any number of times with itself and inserting an equal number of 0's at all junctures. Method (b) may be applied recursively to all terms. - Clarified by Ray Chandler, Oct 14 2017.

Examples

			166425621223026859056339052269787863565428 -> 658139747564935391877311906350534262959233 -> 325180485129881782763533712811068515027377 -> 448540030730236434571833574377853069054146 -> 192910929628537040766341860254183960991698 -> 703288139752915027377325180481642968027593 -> 307567270506730945853551459962385036145286 -> 374974360076539008301807089075220036620417 -> 339052269946031972406296711860450026859056 -> 311906350108036145286307567270199935391877 -> 466287189883036620417374974360601118217236 -> 166425621223026859056339052269787863565428.
		

Crossrefs

Formula

n = f^11(n), n <> f^k(n) for k < 11, where f: x -> |x - reverse(x)|.

Extensions

Terms corrected by Ray Chandler, Sep 27 2017

A292856 Numbers k such that 7 applications of 'Reverse and Subtract' lead to k, whereas fewer than 7 applications do not lead to k.

Original entry on oeis.org

142710354353443018141857289645646556981858, 236547461211163745741763452538788836254258, 331948602685207939133668051397314792060866, 336111694728585211732663888305271414788267
Offset: 1

Views

Author

Meritxell Vila Miñana, Sep 25 2017

Keywords

Comments

There are 7 forty-two-digit terms in the sequence. Terms of derived sequences can be obtained either by inserting at the center of their digits any number of 9's or by concatenating a term any number of times with itself and inserting an equal number of 0's at all junctures.

Examples

			142710354353443018141857289645646556981858 -> 715479301293103964616284520698706896035383 -> 331948602685207939133668051397314792060866 -> 336111694728585211732663888305271414788267 -> 426775719443918676633573224280556081323366 -> 236547461211163745741763452538788836254258 -> 615905177676671508625384094822323328491374 -> 142710354353443018141857289645646556981858
		

Crossrefs

Formula

n = f^7(n), n <> f^k(n) for k < 7, where f: x -> |x - reverse(x)|.

Extensions

Terms ordered by Ray Chandler, Sep 27 2017

A292857 Numbers k such that 8 applications of 'Reverse and Subtract' lead to k, whereas fewer than 8 applications do not lead to k.

Original entry on oeis.org

16914079504181797053273763831171860502859028, 16914099886383117186009041817970531210859028, 31253512653248719266062943707325665377464777, 31253591994370732566027032487192660079464777
Offset: 1

Views

Author

Meritxell Vila Miñana, Sep 25 2017

Keywords

Comments

There are 8 forty-four-digit terms in the sequence. Further terms are obtained (a) by inserting at the center of these terms either any number of 0's (for 16914079504181797053273763831171860502859028, 46492964703403651468863122584458570244070436, 65181741002635316783463471248546280094182933) or any number of 9's (for the other five terms) and (b) by concatenating a term any number of times with itself and inserting an equal number of 0's at all junctures. Method (b) may be applied recursively to all terms. - Clarified by Ray Chandler, Oct 14 2017.

Examples

			16914079504181797053273763831171860502859028 -> 65181741002635316783463471248546280094182933 -> 31253591994370732566027032487192660079464777 -> 46492905012258445857045034036514689840070436 -> 16914099886383117186009041817970531210859028 -> 65181701327124854628081026353167837688182933 -> 31253512653248719266062943707325665377464777 -> 46492964703403651468863122584458570244070436 -> 16914079504181797053273763831171860502859028
		

Crossrefs

Formula

n = f^8(n), n <> f^k(n) for k < 8, where f: x -> |x - reverse(x)|.

Extensions

Terms ordered by Ray Chandler, Sep 27 2017

A292858 Numbers k such that 9 applications of 'Reverse and Subtract' lead to k, whereas fewer than 9 applications do not lead to k.

Original entry on oeis.org

111603518721165960373027269626940447783074704878, 176512193475025275151977319848516480415708873428, 230594281653466673786238177213613424643828503868, 305623327188018690392981819607012089228265673497
Offset: 1

Views

Author

Meritxell Vila Miñana, Sep 25 2017

Keywords

Comments

There are 9 forty-eight-digit terms in the sequence. Further terms are obtained (a) by inserting at the center of these terms either any number of 0's (for 111603518721165960373027269626940447783074704878, 176512193475025275151977319848516480415708873428, 637711546692957642526533655473763239712353991164, 647866614039059340696936459303056040158682342243, 766803951666578089253935450746129113344740601233) or any number of 9's (for the other four terms) and (b) by concatenating a term any number of times with itself and inserting an equal number of 0's at all junctures. Method (b) may be applied recursively to all terms. - Clarified by Ray Chandler, Oct 14 2017.

Examples

			111603518721165960373027269626940447783074704878 -> 766803951666578089253935450746129113344740601233 -> 434697904223266167606880911393148237678581292566 -> 230594281653466673786238177213613424643828503868 -> 637711546692957642526533655473763239712353991164 -> 176512193475025275151977319848516480415708873428 -> 647866614039059340696936459303056040158682342243 -> 305623327188018690392981819607012089228265673497 -> 488753235634961520313936369686084721653457653006 -> 111603518721165960373027269626940447783074704878
		

Crossrefs

Formula

n = f^9(n), n <> f^k(n) for k < 9, where f: x -> |x - reverse(x)|.

Extensions

Terms ordered by Ray Chandler, Sep 27 2017

A292859 Numbers k such that 10 applications of 'Reverse and Subtract' lead to k, whereas fewer than 10 applications do not lead to k.

Original entry on oeis.org

101451293600894707746789, 105292253210898548706399, 245973964471725640521348, 274359478651754026035528, 551171141805402848917944, 597151082055448828858194
Offset: 1

Views

Author

Meritxell Vila Miñana, Sep 25 2017

Keywords

Comments

There are 10 twenty-four-digit terms in the sequence. Terms of derived sequences can be obtained either by inserting at the center of their digits any number of 9's or by concatenating a term any number of times with itself and inserting an equal number of 0's at all junctures.

Examples

			105292253210898548706399 -> 888315592687113803586102 -> 686630284375327508072214 -> 274359478651754026035528 -> 551171141805402848917944 -> 101451293600894707746789 -> 886196413897111684407312 -> 672491927785313369715624 -> 245973964471725640521348 -> 597151082055448828858194 -> 105292253210898548706399
		

Crossrefs

Formula

n = f^10(n), n <> f^k(n) for k < 10, where f: x -> |x - reverse(x)|.

Extensions

Terms ordered by Ray Chandler, Sep 27 2017

A292634 Numbers n such that 4 iterations of 'Reverse and Subtract' lead to n, whereas fewer than 4 iterations do not lead to n.

Original entry on oeis.org

169140971830859028, 312535222687464777, 464929563535070436, 651817066348182933
Offset: 1

Views

Author

Meritxell Vila Miñana, Sep 20 2017

Keywords

Comments

There are 4 eighteen-digit terms in the sequence. Terms of derived sequences can be obtained either by inserting at the center of their digits any number of 9's or by concatenating a term any number of times with itself and inserting an equal number of 0's at all junctures.

Examples

			|169140971830859028 - 820958038179041961| = 651817066348182933
|651817066348182933 - 339281843660718156| = 312535222687464777
|312535222687464777 - 777464786222535213| = 464929563535070436
|464929563535070436 - 634070535365929464| = 169140971830859028
		

Crossrefs

Formula

n = f^4(n), n <> f^k(n) for k < 4, where f: x -> |x - reverse(x)|.

Extensions

Terms ordered by Ray Chandler, Sep 27 2017

A292635 Numbers n such that 5 applications of "Reverse and Subtract" lead to n, whereas fewer than 5 applications do not lead to n.

Original entry on oeis.org

10591266563195008940873343680499, 27547681086656717245231891334328, 54795638726597554520436127340244, 68723845538328853127615446167114, 88817367774609971118263222539002
Offset: 1

Views

Author

Meritxell Vila Miñana, Sep 20 2017

Keywords

Comments

There are 5 thirty-two-digit terms in the sequence. Further sequences can be obtained by inserting at the center of these terms any number of 9's and by concatenating a term any number of times with itself and inserting an equal number of 0's at all junctures.

Examples

			10591266563195008940873343680499 -> 88817367774609971118263222539002 -> 68723845538328853127615446167114 -> 27547681086656717245231891334328 -> 54795638726597554520436127340244 -> 10591266563195008940873343680499
		

Crossrefs

Formula

n = f^5(n), n <> f^k(n) for k < 5, where f: x -> |x - reverse(x)|.

Extensions

Terms ordered by Ray Chandler, Sep 27 2017

A292992 Numbers n such that 13 applications of 'Reverse and Subtract' lead to n, whereas fewer than 13 applications do not lead to n.

Original entry on oeis.org

1195005230033599502088049947699664004979, 1381092199992389193086189078000076108069, 1417996648846699605185820033511533003948, 2845548027720844548271544519722791554517
Offset: 1

Views

Author

Ray Chandler, Sep 28 2017

Keywords

Comments

There are 13 forty-digit terms in the sequence. Terms of derived sequences can be obtained either by inserting at the center of their digits any number of 9's or by concatenating a term any number of times with itself and inserting an equal number of 0's at all junctures.

Examples

			1195005230033599502088049947699664004979 -> 8598999439933899906714010005600661000932 -> 6208997779868899802537910022201311001974 -> 1417996648846699605185820033511533003948 -> 7075006702306600680629249932976933993193 -> 3161013305514201251368389866944857987486 -> 3686884278982488587263131157210175114127 -> 3527231431145022726364727685688549772736 -> 2845548027720844548271544519722791554517 -> 4309003944558309903456909960554416900965 -> 1381092199992389193086189078000076108069 -> 8226924500016320623717730754999836793762 -> 5552948110021750246544470518899782497534 ->
  1195005230033599502088049947699664004979.
		

Crossrefs

Formula

n = f^13(n), n <> f^k(n) for k < 13, where f: x -> |x - reverse(x)|.

A292993 Numbers n such that 15 applications of 'Reverse and Subtract' lead to n, whereas fewer than 15 applications do not lead to n.

Original entry on oeis.org

10695314508256806604321090888649339244708568530399, 11787342277647023379656208735392766826312885522179, 14638655404662283607788118901219361883250644206458, 26730889210860738952361172793674105293199801097128
Offset: 1

Views

Author

Ray Chandler, Sep 28 2017

Keywords

Comments

There are 15 fifty-digit terms in the sequence. Further terms are obtained (a) by inserting at the center of these terms either any number of 0's (for 10695314508256806604321090888649339244708568530399, 26730889210860738952361172793674105293199801097128, 29899105876561459824028272726867015583422139910097, 49102887245877091252834454555175879833145710289795, 55448121688278511195278554322651878413601497706634, 68315444154984874470735536347381553142144945548514, 88608272072487486790367718123691321620571972829202) or any number of 9's (for the other eight terms) and (b) by concatenating a term any number of times with itself and inserting an equal number of 0's at all junctures. Method (b) may be applied recursively to all terms. - Ray Chandler, Oct 15 2017

Examples

			10695314508256806604321090888649339244708568530399 -> 88608272072487486790367718123691321620571972829202 -> 68315444154984874470735536347381553142144945548514 -> 26730889210860738952361172793674105293199801097128 -> 55448121688278511195278554322651878413601497706634 -> 11787342277647023379656208735392766826312885522179 -> 85335216543715843349697571530304565248364338856532 -> 61769333197331586809394053950610230396629777603174 -> 14638655404662283607788118901219361883250644206458 -> 70821589200576532783422862287551276343389811477183 -> 32644177302242165567844635465112552775889512964376 -> 34702744296615559953311818179764003348330864180247 -> 39505402506768770093485363631571992203338380540496 -> 29899105876561459824028272726867015583422139910097 -> 49102887245877091252834454555175879833145710289795.
		

Crossrefs

Formula

n = f^15(n), n <> f^k(n) for k < 15, where f: x -> |x - reverse(x)|.
Showing 1-9 of 9 results.