A215722 Decimal expansion of Pi*(3 - gamma)/32, where gamma is Euler's constant A001620.
2, 3, 7, 8, 5, 6, 2, 9, 5, 8, 8, 6, 8, 0, 5, 5, 0, 6, 7, 4, 2, 9, 6, 2, 3, 6, 3, 0, 8, 0, 2, 3, 3, 3, 9, 4, 7, 9, 6, 3, 7, 0, 1, 2, 5, 5, 2, 3, 5, 2, 2, 3, 9, 5, 4, 4, 6, 5, 2, 1, 4, 2, 8, 0, 8, 5, 1, 8, 5, 6, 2, 4, 6, 6, 3, 3, 9, 3, 2, 7, 9, 9, 1, 3, 7, 1, 1, 2, 1, 7, 8, 7, 9, 8, 3, 7, 5, 2, 3, 8, 3, 7, 7, 2, 9, 5, 5, 5, 3, 4, 0, 9
Offset: 0
Examples
0.237856295886805506742962363080233394796370125523522395446521428085...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.6.2, p. 42.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- V. V. Volchkov, On an equality equivalent to the Riemann hypothesis, Ukrainian Mathematical Journal 47:3 (1995), pp. 491-493.
Programs
-
Magma
R:= RealField(100); Pi(R)*(3 - EulerGamma(R))/32; // G. C. Greubel, Aug 27 2018
-
Mathematica
RealDigits[Pi*(3 - EulerGamma)/32, 10, 100][[1]] (* G. C. Greubel, Aug 27 2018 *)
-
PARI
Pi*(3-Euler)/32
Comments