A215774 Number of undirected labeled graphs on n+4 nodes with exactly n cycle graphs as connected components.
0, 12, 127, 742, 3157, 10857, 31899, 82929, 195459, 425139, 864864, 1662661, 3045406, 5349526, 9059946, 14858646, 23684298, 36804558, 55902693, 83180328, 121478203, 174416935, 246559885, 343600335, 472575285, 642108285, 862683822, 1146955887, 1510093452
Offset: 0
Keywords
Examples
a(1) = 12 = 4!/2: (1-2-3-4-5-1), (1-2-3-5-4-1), (1-2-4-3-5-1), (1-2-4-5-3-1), (1-2-5-3-4-1), (1-2-5-4-3-1), (1-3-2-4-5-1), (1-3-2-5-4-1), (1-3-4-2-5-1), (1-3-5-2-4-1), (1-4-2-3-5-1), (1-4-3-2-5-1).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
A diagonal of A215771.
Programs
-
Maple
a:= n-> (6864+(20180+(22980+(13295+(4536+(1070+(180+15*n)* n)*n)*n)*n)*n)*n)*n/5760: seq(a(n), n=0..40);
Formula
G.f.: (43*x^3+31*x^2+19*x+12)*x/(1-x)^9.
a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(15*n^3+30*n^2+245*n+286)/5760.