A215796 Number of distinct values taken by 7th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.
1, 1, 2, 4, 9, 20, 48, 115, 283, 691, 1681, 3988, 9241, 20681, 44217, 89644
Offset: 1
Examples
a(4) = 4 because the A000108(3) = 5 possible parenthesizations of x^x^x^x lead to 4 different values of the 7th derivative at x=1: (x^(x^(x^x))) -> 26054; ((x^x)^(x^x)), ((x^(x^x))^x) -> 41090; (x^((x^x)^x)) -> 47110; (((x^x)^x)^x) -> 70098.
Crossrefs
Column k=7 of A216368.
Cf. A000081 (distinct functions), A000108 (parenthesizations), A000012 (first derivatives), A028310 (2nd derivatives), A199085 (3rd derivatives), A199205 (4th derivatives), A199296 (5th derivatives), A199883 (6th derivatives), A002845, A003018, A003019, A145545, A145546, A145547, A145548, A145549, A145550, A082499, A196244, A198683, A215703, A215837.
Programs
-
Maple
T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1$2))) end: g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq( seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w= combinat[choose]([$1..nops(T(i))+j-1], j)), j=0..n/i)]) end: f:= proc() local i, l; i, l:= 0, []; proc(n) while n> nops(l) do i:= i+1; l:= [l[], T(i)[]] od; l[n] end end(): a:= n-> nops({map(f-> 7!*coeff(series(subs(x=x+1, f), x, 8), x, 7), T(n))[]}): seq(a(n), n=1..12);