cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215817 a(n) is the rational part of A(n) = (6-sqrt(7))*A(n-1) - (12-4*sqrt(7))*A(n-2) + (8-3*sqrt(7))*A(n-3) with A(0)=3, A(1)=6-sqrt(7), A(2)=19-4*sqrt(7).

Original entry on oeis.org

3, 6, 19, 66, 237, 866, 3202, 11948, 44917, 169914, 646134, 2467988, 9462498, 36398004, 140399901, 542894726, 2103745125, 8167514346, 31762430143, 123704647562, 482435457922, 1883712663668, 7363103647479, 28809291337986, 112820819490970, 442175629583316
Offset: 0

Views

Author

Roman Witula, Aug 25 2012

Keywords

Comments

The Berndt-type sequence number 14 for the argument 2Pi/7 defined by requiring a(n) to be the rational part of the trigonometric sum A(n) := c(1)^(2*n) + c(2)^(2*n) + c(4)^(2*n), where c(j) := 2*cos(Pi/4 + 2*Pi*j/7) = 2*cos((7+8*j)*Pi/28). We note that (A(n)-a(n))/sqrt(7) = A215877(n) are all integers. We have A(n)=2^n*O(n;i/2), where O(n;d) denote the big omega function with index n for the argument d in C defined in comments to A215794 (see also Witula-Slota's paper - Section 6). From the respective recurrence relation for this function we generate the title recurrence for A(n).

Crossrefs

Formula

a(n) = rational part of c(1)^(2n) + c(2)^(2n) + c(4)^(2n) = (1-s(1))^n + (1-s(2))^n + (1-s(4))^n, where c(j) := 2*cos((7+8*j)/28) and s(j) := sin(2*Pi*j/7).
Empirical g.f.: -(2*x-1)*(6*x^4 -40*x^3 +58*x^2 -24*x +3) / (x^6 -24*x^5 +86*x^4 -104*x^3 +53*x^2 -12*x +1). - Colin Barker, Jun 01 2013