A215834 Fourth derivative of f_n at x=1, where f_n is the n-th of all functions that are representable as x^x^...^x with m>=1 x's and parentheses inserted in all possible ways.
0, 8, 52, 32, 156, 100, 80, 56, 344, 228, 148, 172, 124, 152, 104, 80, 56, 640, 440, 300, 324, 252, 220, 172, 268, 196, 148, 124, 248, 176, 128, 128, 104, 104, 80, 56, 56, 1068, 760, 536, 372, 560, 464, 396, 324, 292, 244, 196, 444, 348, 276, 252, 316, 244
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..7813
Crossrefs
Programs
-
Maple
T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1$2))) end: g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq( seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w= combinat[choose]([$1..nops(T(i))+j-1], j)), j=0..n/i)]) end: f:= proc() local i, l; i, l:= 0, []; proc(n) while n> nops(l) do i:= i+1; l:= [l[], T(i)[]] od; l[n] end end(): a:= n-> 4!*coeff(series(subs(x=x+1, f(n)), x, 5), x, 4): seq(a(n), n=1..100);
Comments