A215850 Primes p such that 2*p + 1 divides Lucas(p).
5, 29, 89, 179, 239, 359, 419, 509, 659, 719, 809, 1019, 1049, 1229, 1289, 1409, 1439, 1499, 1559, 1889, 2039, 2069, 2129, 2339, 2399, 2459, 2549, 2699, 2819, 2939, 2969, 3299, 3329, 3359, 3389, 3449, 3539, 3779, 4019, 4349, 4409, 4919, 5039, 5279, 5399, 5639
Offset: 1
Keywords
Examples
29 is in the sequence since it is prime and 59 is a factor of Lucas(29) = 1149851.
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000
- C. K. Caldwell, "Top Twenty" page, Lucas cofactor
- Eric Weisstein's World of Mathematics, Lucas Number
Programs
-
Magma
[5] cat [n: n in [29..5639 by 30] | IsPrime(n) and IsPrime(2*n+1)];
-
Mathematica
Select[Prime@Range[740], Divisible[LucasL[#], 2*# + 1] &] Prepend[Select[Range[29, 5639, 30], PrimeQ[#] && PrimeQ[2*# + 1] &], 5]
-
PARI
is_A215850(n)=isprime(n)&!real((Mod(2,2*n+1)+quadgen(5))*quadgen(5)^n) \\ - M. F. Hasler, Aug 25 2012
Comments