A215858 Number of simple labeled graphs on n nodes with exactly 8 connected components that are trees or cycles.
1, 36, 1110, 31680, 904299, 26603148, 821278744, 26864874465, 935625630797, 34750489933016, 1375999952017938, 57998361908305494, 2596646585329104847, 123180358220543885268, 6175880603945440333627, 326438846760992348696038, 18147404450341079958539275
Offset: 8
Keywords
Examples
a(9) = 36: each graph has one 2-node tree and 7 1-node trees and C(9,2) = 36.
Links
- Alois P. Heinz, Table of n, a(n) for n = 8..150
Programs
-
Maple
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0, `if`(n=0, 1, add(binomial(n-1, i)*T(n-1-i, k-1)* `if`(i<2, 1, i!/2 +(i+1)^(i-1)), i=0..n-k))) end: a:= n-> T(n, 8): seq(a(n), n=8..25);