A215861 Number T(n,k) of simple labeled graphs on n nodes with exactly k connected components that are trees or cycles; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 0, 1, 0, 1, 1, 0, 4, 3, 1, 0, 19, 19, 6, 1, 0, 137, 135, 55, 10, 1, 0, 1356, 1267, 540, 125, 15, 1, 0, 17167, 15029, 6412, 1610, 245, 21, 1, 0, 264664, 218627, 90734, 23597, 3990, 434, 28, 1, 0, 4803129, 3783582, 1515097, 394506, 70707, 8694, 714, 36, 1
Offset: 0
Examples
T(4,2) = 19: .1 2. .1 2. .1-2. .1-2. .1 2. .1 2. .1 2. .1 2. .1 2. .1 2. . /|. .|\ . .|/ . . \|. . /|. . |. . / . .|\ . . \ . .| . .4-3. .4-3. .4 3. .4 3. .4 3. .4-3. .4-3. .4 3. .4-3. .4-3. . .1-2. .1-2. .1 2. .1-2. .1-2. .1 2. .1-2. .1 2. .1 2. .| . . / . .|/ . . \ . . |. . \|. . . .| |. . X . .4 3. .4 3. .4 3. .4 3. .4 3. .4 3. .4-3. .4 3. .4 3. Triangle T(n,k) begins: 1; 0, 1; 0, 1, 1; 0, 4, 3, 1; 0, 19, 19, 6, 1; 0, 137, 135, 55, 10, 1; 0, 1356, 1267, 540, 125, 15, 1; 0, 17167, 15029, 6412, 1610, 245, 21, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0, `if`(n=0, 1, add(binomial(n-1, i)*T(n-1-i, k-1)* `if`(i<2, 1, i!/2 +(i+1)^(i-1)), i=0..n-k))) end: seq(seq(T(n, k), k=0..n), n=0..12); # Alternatively, with the function BellMatrix defined in A264428: BellMatrix(n -> `if`(n<2, 1, n!/2+(n+1)^(n-1)), 8); # Peter Luschny, Jan 21 2016
-
Mathematica
t[0, 0] = 1; t[n_, k_] /; k < 0 || k > n = 0; t[n_, k_] := t[n, k] =Sum[ Binomial[n-1, i]*t[n-1-i, k-1]* If[i < 2, 1, i!/2 + (i+1)^(i-1)], {i, 0, n-k}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 07 2013 *) (* Alternatively, with the function BellMatrix defined in A264428: *) g[n_] = If[n < 2, 1, n!/2 + (n+1)^(n-1)]; BellMatrix[g, 8] (* Peter Luschny, Jan 21 2016 *) rows = 11; t = Table[If[n<2, 1, n!/2 + (n+1)^(n-1)], {n, 0, rows}]; T[n_, k_] := BellY[n, k, t]; Table[T[n, k], {n, 0, rows}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 22 2018, after Peter Luschny *)
-
Sage
# uses[bell_matrix from A264428] bell_matrix(lambda n: factorial(n)//2 + (n+1)^(n-1) if n>=2 else 1, 8) # Peter Luschny, Jan 21 2016
Formula
T(0,0) = 1, T(n,k) = 0 for k<0 or k>n, and otherwise T(n,k) = Sum_{i=0..n-k} C(n-1,i)*T(n-1-i,k-1)*h(i) with h(i) = 1 for i<2 and h(i) = i!/2 + (i+1)^(i-1) else.
Comments