A215863 Number of simple labeled graphs on n+3 nodes with exactly n connected components that are trees or cycles.
0, 19, 135, 540, 1610, 3990, 8694, 17220, 31680, 54945, 90805, 144144, 221130, 329420, 478380, 679320, 945744, 1293615, 1741635, 2311540, 3028410, 3920994, 5022050, 6368700, 8002800, 9971325, 12326769, 15127560, 18438490, 22331160, 26884440, 32184944, 38327520
Offset: 0
Keywords
Examples
a(1) = 19: .1-2. .1-2. .1 2. .1-2. .1-2. .1 2. .1 2. .1 2. .1-2. .1-2. .| |. . X . .|X|. .|\ . . /|. . \|. .|/ . .| |. .| . .| |. .4-3. .4-3. .4.3. .4.3. .4.3. .4-3. .4-3. .4-3. .4-3. .4.3. . .1-2. .1 2. .1-2. .1-2. .1-2. .1 2. .1 2. .1 2. .1 2. . |. . X . . / . . \ . . X . .|/|. . X|. .|X . .|\|. .4-3. .4-3. .4-3. .4-3. .4.3. .4.3. .4.3. .4.3. .4.3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
A diagonal of A215861.
Programs
-
Maple
a:= n-> binomial(n+3,4)*(24+(13+n)*n)/2: seq(a(n), n=0..40);
Formula
G.f.: (6*x^2-2*x-19)*x/(x-1)^7.
a(n) = C(n+3,4)*(n^2+13*n+24)/2.