cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A215870 T(n,k) = Number of permutations of 0..floor((n*k-2)/2) on odd squares of an n X k array such that each row, column, diagonal and (downwards) antidiagonal of odd squares is increasing.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 5, 4, 4, 1, 1, 1, 1, 5, 12, 10, 4, 1, 1, 1, 1, 14, 29, 78, 20, 8, 1, 1, 1, 1, 14, 110, 262, 189, 50, 8, 1, 1, 1, 1, 42, 290, 3001, 1642, 1233, 100, 16, 1, 1, 1, 1, 42, 1274, 11694, 26451, 15485, 2988, 250, 16, 1, 1, 1, 1, 132
Offset: 1

Views

Author

R. H. Hardin, Aug 25 2012

Keywords

Comments

Table starts
.1.1.1..1....1......1.......1.........1.........1..........1........1
.1.1.1..2....2......5.......5........14........14.........42.......42
.1.1.1..2....4.....12......29.......110.......290.......1274.....3532
.1.1.1..4...10.....78.....262......3001.....11694.....170594...727846
.1.1.1..4...20....189....1642.....26451....307874....7027942.98057806
.1.1.1..8...50...1233...15485....767560..14296434.1124811332
.1.1.1..8..100...2988...97289...6812794.386699176
.1.1.1.16..250..19494..918637.198409297
.1.1.1.16..500..47241.5772013
.1.1.1.32.1250.308205
.1.1.1.32.2500
.1.1.1.64

Examples

			Some solutions for n=6, k=4:
..x..0..x..1....x..0..x..2....x..0..x..2....x..0..x..1....x..0..x..1
..2..x..3..x....1..x..3..x....1..x..3..x....2..x..3..x....2..x..3..x
..x..4..x..5....x..4..x..6....x..4..x..5....x..4..x..6....x..4..x..6
..6..x..7..x....5..x..7..x....6..x..7..x....5..x..7..x....5..x..7..x
..x..8..x.10....x..8..x.10....x..8..x.10....x..8..x.10....x..8..x..9
..9..x.11..x....9..x.11..x....9..x.11..x....9..x.11..x...10..x.11..x
		

Crossrefs

Column 5 is A026395(n-1).
Row 2 is A000108(floor(n/2)).
Even squares: A215788.

Formula

Empirical for column k:
k=4: a(n) = 2*a(n-2), A016116.
k=5: a(n) = 5*a(n-2) for n>3, A026395.
k=6: a(n) = 16*a(n-2) -3*a(n-4), A215866.
k=7: a(n) = 61*a(n-2) -99*a(n-4) -2*a(n-6), A215867.
k=8: a(n) = 272*a(n-2) -3439*a(n-4) -3336*a(n-6) +140*a(n-8).
k=9: a(n) = 1385*a(n-2) -131648*a(n-4) -318070*a(n-6) -4160916*a(n-8) -1097892*a(n-10) +648*a(n-12).