A215870 T(n,k) = Number of permutations of 0..floor((n*k-2)/2) on odd squares of an n X k array such that each row, column, diagonal and (downwards) antidiagonal of odd squares is increasing.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 5, 4, 4, 1, 1, 1, 1, 5, 12, 10, 4, 1, 1, 1, 1, 14, 29, 78, 20, 8, 1, 1, 1, 1, 14, 110, 262, 189, 50, 8, 1, 1, 1, 1, 42, 290, 3001, 1642, 1233, 100, 16, 1, 1, 1, 1, 42, 1274, 11694, 26451, 15485, 2988, 250, 16, 1, 1, 1, 1, 132
Offset: 1
Examples
Some solutions for n=6, k=4: ..x..0..x..1....x..0..x..2....x..0..x..2....x..0..x..1....x..0..x..1 ..2..x..3..x....1..x..3..x....1..x..3..x....2..x..3..x....2..x..3..x ..x..4..x..5....x..4..x..6....x..4..x..5....x..4..x..6....x..4..x..6 ..6..x..7..x....5..x..7..x....6..x..7..x....5..x..7..x....5..x..7..x ..x..8..x.10....x..8..x.10....x..8..x.10....x..8..x.10....x..8..x..9 ..9..x.11..x....9..x.11..x....9..x.11..x....9..x.11..x...10..x.11..x
Links
- R. H. Hardin, Table of n, a(n) for n = 1..125
Formula
Empirical for column k:
k=4: a(n) = 2*a(n-2), A016116.
k=5: a(n) = 5*a(n-2) for n>3, A026395.
k=6: a(n) = 16*a(n-2) -3*a(n-4), A215866.
k=7: a(n) = 61*a(n-2) -99*a(n-4) -2*a(n-6), A215867.
k=8: a(n) = 272*a(n-2) -3439*a(n-4) -3336*a(n-6) +140*a(n-8).
k=9: a(n) = 1385*a(n-2) -131648*a(n-4) -318070*a(n-6) -4160916*a(n-8) -1097892*a(n-10) +648*a(n-12).
Comments